| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvnbtwn | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A  -. ( A C. C /\ C C. B ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							iman | 
							 |-  ( ( ( A C. C /\ C C_ B ) -> C = B ) <-> -. ( ( A C. C /\ C C_ B ) /\ -. C = B ) )  | 
						
						
							| 3 | 
							
								
							 | 
							anass | 
							 |-  ( ( ( A C. C /\ C C_ B ) /\ -. C = B ) <-> ( A C. C /\ ( C C_ B /\ -. C = B ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dfpss2 | 
							 |-  ( C C. B <-> ( C C_ B /\ -. C = B ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							anbi2i | 
							 |-  ( ( A C. C /\ C C. B ) <-> ( A C. C /\ ( C C_ B /\ -. C = B ) ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							bitr4i | 
							 |-  ( ( ( A C. C /\ C C_ B ) /\ -. C = B ) <-> ( A C. C /\ C C. B ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							notbii | 
							 |-  ( -. ( ( A C. C /\ C C_ B ) /\ -. C = B ) <-> -. ( A C. C /\ C C. B ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							bitr2i | 
							 |-  ( -. ( A C. C /\ C C. B ) <-> ( ( A C. C /\ C C_ B ) -> C = B ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							imbitrdi | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A  ( ( A C. C /\ C C_ B ) -> C = B ) ) )  |