Step |
Hyp |
Ref |
Expression |
1 |
|
cvnbtwn |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A -. ( A C. C /\ C C. B ) ) ) |
2 |
|
iman |
|- ( ( ( A C_ C /\ C C_ B ) -> ( C = A \/ C = B ) ) <-> -. ( ( A C_ C /\ C C_ B ) /\ -. ( C = A \/ C = B ) ) ) |
3 |
|
an4 |
|- ( ( ( A C_ C /\ C C_ B ) /\ ( -. A = C /\ -. C = B ) ) <-> ( ( A C_ C /\ -. A = C ) /\ ( C C_ B /\ -. C = B ) ) ) |
4 |
|
ioran |
|- ( -. ( C = A \/ C = B ) <-> ( -. C = A /\ -. C = B ) ) |
5 |
|
eqcom |
|- ( C = A <-> A = C ) |
6 |
5
|
notbii |
|- ( -. C = A <-> -. A = C ) |
7 |
6
|
anbi1i |
|- ( ( -. C = A /\ -. C = B ) <-> ( -. A = C /\ -. C = B ) ) |
8 |
4 7
|
bitri |
|- ( -. ( C = A \/ C = B ) <-> ( -. A = C /\ -. C = B ) ) |
9 |
8
|
anbi2i |
|- ( ( ( A C_ C /\ C C_ B ) /\ -. ( C = A \/ C = B ) ) <-> ( ( A C_ C /\ C C_ B ) /\ ( -. A = C /\ -. C = B ) ) ) |
10 |
|
dfpss2 |
|- ( A C. C <-> ( A C_ C /\ -. A = C ) ) |
11 |
|
dfpss2 |
|- ( C C. B <-> ( C C_ B /\ -. C = B ) ) |
12 |
10 11
|
anbi12i |
|- ( ( A C. C /\ C C. B ) <-> ( ( A C_ C /\ -. A = C ) /\ ( C C_ B /\ -. C = B ) ) ) |
13 |
3 9 12
|
3bitr4i |
|- ( ( ( A C_ C /\ C C_ B ) /\ -. ( C = A \/ C = B ) ) <-> ( A C. C /\ C C. B ) ) |
14 |
13
|
notbii |
|- ( -. ( ( A C_ C /\ C C_ B ) /\ -. ( C = A \/ C = B ) ) <-> -. ( A C. C /\ C C. B ) ) |
15 |
2 14
|
bitr2i |
|- ( -. ( A C. C /\ C C. B ) <-> ( ( A C_ C /\ C C_ B ) -> ( C = A \/ C = B ) ) ) |
16 |
1 15
|
syl6ib |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A ( ( A C_ C /\ C C_ B ) -> ( C = A \/ C = B ) ) ) ) |