Metamath Proof Explorer


Theorem cvnsym

Description: The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnsym
|- ( ( A e. CH /\ B e. CH ) -> ( A  -. B 

Proof

Step Hyp Ref Expression
1 cvpss
 |-  ( ( A e. CH /\ B e. CH ) -> ( A  A C. B ) )
2 cvpss
 |-  ( ( B e. CH /\ A e. CH ) -> ( B  B C. A ) )
3 2 ancoms
 |-  ( ( A e. CH /\ B e. CH ) -> ( B  B C. A ) )
4 pssn2lp
 |-  -. ( B C. A /\ A C. B )
5 4 imnani
 |-  ( B C. A -> -. A C. B )
6 3 5 syl6
 |-  ( ( A e. CH /\ B e. CH ) -> ( B  -. A C. B ) )
7 6 con2d
 |-  ( ( A e. CH /\ B e. CH ) -> ( A C. B -> -. B 
8 1 7 syld
 |-  ( ( A e. CH /\ B e. CH ) -> ( A  -. B