Metamath Proof Explorer


Theorem cvr1

Description: A Hilbert lattice has the covering property. Proposition 1(ii) in Kalmbach p. 140 (and its converse). ( chcv1 analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses cvr1.b
|- B = ( Base ` K )
cvr1.l
|- .<_ = ( le ` K )
cvr1.j
|- .\/ = ( join ` K )
cvr1.c
|- C = ( 
cvr1.a
|- A = ( Atoms ` K )
Assertion cvr1
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( -. P .<_ X <-> X C ( X .\/ P ) ) )

Proof

Step Hyp Ref Expression
1 cvr1.b
 |-  B = ( Base ` K )
2 cvr1.l
 |-  .<_ = ( le ` K )
3 cvr1.j
 |-  .\/ = ( join ` K )
4 cvr1.c
 |-  C = ( 
5 cvr1.a
 |-  A = ( Atoms ` K )
6 hlomcmcv
 |-  ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. CvLat ) )
7 1 2 3 4 5 cvlcvr1
 |-  ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ X e. B /\ P e. A ) -> ( -. P .<_ X <-> X C ( X .\/ P ) ) )
8 6 7 syl3an1
 |-  ( ( K e. HL /\ X e. B /\ P e. A ) -> ( -. P .<_ X <-> X C ( X .\/ P ) ) )