Step |
Hyp |
Ref |
Expression |
1 |
|
cvr2.b |
|- B = ( Base ` K ) |
2 |
|
cvr2.s |
|- .< = ( lt ` K ) |
3 |
|
cvr2.j |
|- .\/ = ( join ` K ) |
4 |
|
cvr2.c |
|- C = ( |
5 |
|
cvr2.a |
|- A = ( Atoms ` K ) |
6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
7 |
6
|
3ad2ant1 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> K e. Lat ) |
8 |
|
simp2 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> X e. B ) |
9 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
10 |
9
|
3ad2ant3 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> P e. B ) |
11 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
12 |
1 11 2 3
|
latnle |
|- ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( -. P ( le ` K ) X <-> X .< ( X .\/ P ) ) ) |
13 |
7 8 10 12
|
syl3anc |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( -. P ( le ` K ) X <-> X .< ( X .\/ P ) ) ) |
14 |
1 11 3 4 5
|
cvr1 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( -. P ( le ` K ) X <-> X C ( X .\/ P ) ) ) |
15 |
13 14
|
bitr3d |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( X .< ( X .\/ P ) <-> X C ( X .\/ P ) ) ) |