Metamath Proof Explorer


Theorem cvrat2

Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 30-Nov-2011)

Ref Expression
Hypotheses cvrat2.b
|- B = ( Base ` K )
cvrat2.j
|- .\/ = ( join ` K )
cvrat2.c
|- C = ( 
cvrat2.a
|- A = ( Atoms ` K )
Assertion cvrat2
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ X C ( P .\/ Q ) ) ) -> X e. A )

Proof

Step Hyp Ref Expression
1 cvrat2.b
 |-  B = ( Base ` K )
2 cvrat2.j
 |-  .\/ = ( join ` K )
3 cvrat2.c
 |-  C = ( 
4 cvrat2.a
 |-  A = ( Atoms ` K )
5 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
6 1 2 5 3 4 atcvrj0
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( X = ( 0. ` K ) <-> P = Q ) )
7 6 3expa
 |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X = ( 0. ` K ) <-> P = Q ) )
8 7 necon3bid
 |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X =/= ( 0. ` K ) <-> P =/= Q ) )
9 simpl
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. HL )
10 simpr1
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B )
11 hllat
 |-  ( K e. HL -> K e. Lat )
12 11 adantr
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. Lat )
13 simpr2
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. A )
14 1 4 atbase
 |-  ( P e. A -> P e. B )
15 13 14 syl
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. B )
16 simpr3
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A )
17 1 4 atbase
 |-  ( Q e. A -> Q e. B )
18 16 17 syl
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. B )
19 1 2 latjcl
 |-  ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B )
20 12 15 18 19 syl3anc
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B )
21 eqid
 |-  ( lt ` K ) = ( lt ` K )
22 1 21 3 cvrlt
 |-  ( ( ( K e. HL /\ X e. B /\ ( P .\/ Q ) e. B ) /\ X C ( P .\/ Q ) ) -> X ( lt ` K ) ( P .\/ Q ) )
23 22 ex
 |-  ( ( K e. HL /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X C ( P .\/ Q ) -> X ( lt ` K ) ( P .\/ Q ) ) )
24 9 10 20 23 syl3anc
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> X ( lt ` K ) ( P .\/ Q ) ) )
25 1 21 2 5 4 cvrat
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= ( 0. ` K ) /\ X ( lt ` K ) ( P .\/ Q ) ) -> X e. A ) )
26 25 expcomd
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( lt ` K ) ( P .\/ Q ) -> ( X =/= ( 0. ` K ) -> X e. A ) ) )
27 24 26 syld
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( X =/= ( 0. ` K ) -> X e. A ) ) )
28 27 imp
 |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X =/= ( 0. ` K ) -> X e. A ) )
29 8 28 sylbird
 |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( P =/= Q -> X e. A ) )
30 29 ex
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( P =/= Q -> X e. A ) ) )
31 30 com23
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P =/= Q -> ( X C ( P .\/ Q ) -> X e. A ) ) )
32 31 impd
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ X C ( P .\/ Q ) ) -> X e. A ) )
33 32 3impia
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ X C ( P .\/ Q ) ) ) -> X e. A )