| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvrat4.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cvrat4.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cvrat4.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | cvrat4.z |  |-  .0. = ( 0. ` K ) | 
						
							| 5 |  | cvrat4.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 |  | hlatl |  |-  ( K e. HL -> K e. AtLat ) | 
						
							| 7 | 6 | adantr |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. AtLat ) | 
						
							| 8 |  | simpr1 |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B ) | 
						
							| 9 | 1 2 4 5 | atlex |  |-  ( ( K e. AtLat /\ X e. B /\ X =/= .0. ) -> E. r e. A r .<_ X ) | 
						
							| 10 | 9 | 3exp |  |-  ( K e. AtLat -> ( X e. B -> ( X =/= .0. -> E. r e. A r .<_ X ) ) ) | 
						
							| 11 | 7 8 10 | sylc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X =/= .0. -> E. r e. A r .<_ X ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( X =/= .0. -> E. r e. A r .<_ X ) ) | 
						
							| 13 |  | simpll |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> K e. HL ) | 
						
							| 14 |  | simplr3 |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> Q e. A ) | 
						
							| 15 |  | simpr |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> r e. A ) | 
						
							| 16 | 2 3 5 | hlatlej1 |  |-  ( ( K e. HL /\ Q e. A /\ r e. A ) -> Q .<_ ( Q .\/ r ) ) | 
						
							| 17 | 13 14 15 16 | syl3anc |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> Q .<_ ( Q .\/ r ) ) | 
						
							| 18 |  | breq1 |  |-  ( P = Q -> ( P .<_ ( Q .\/ r ) <-> Q .<_ ( Q .\/ r ) ) ) | 
						
							| 19 | 17 18 | imbitrrid |  |-  ( P = Q -> ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> P .<_ ( Q .\/ r ) ) ) | 
						
							| 20 | 19 | expd |  |-  ( P = Q -> ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( r e. A -> P .<_ ( Q .\/ r ) ) ) ) | 
						
							| 21 | 20 | impcom |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( r e. A -> P .<_ ( Q .\/ r ) ) ) | 
						
							| 22 | 21 | anim2d |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( ( r .<_ X /\ r e. A ) -> ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) | 
						
							| 23 | 22 | expcomd |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( r e. A -> ( r .<_ X -> ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) | 
						
							| 24 | 23 | reximdvai |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( E. r e. A r .<_ X -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) | 
						
							| 25 | 12 24 | syld |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) | 
						
							| 26 | 25 | ex |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) | 
						
							| 27 | 26 | a1i |  |-  ( P .<_ ( X .\/ Q ) -> ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) ) | 
						
							| 28 | 27 | com4l |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) ) | 
						
							| 29 | 28 | imp4a |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) | 
						
							| 30 |  | hllat |  |-  ( K e. HL -> K e. Lat ) | 
						
							| 31 | 30 | adantr |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. Lat ) | 
						
							| 32 |  | simpr3 |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A ) | 
						
							| 33 | 1 5 | atbase |  |-  ( Q e. A -> Q e. B ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. B ) | 
						
							| 35 | 1 2 3 | latleeqj2 |  |-  ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q .<_ X <-> ( X .\/ Q ) = X ) ) | 
						
							| 36 | 31 34 8 35 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .<_ X <-> ( X .\/ Q ) = X ) ) | 
						
							| 37 | 36 | biimpa |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) -> ( X .\/ Q ) = X ) | 
						
							| 38 | 37 | breq2d |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) -> ( P .<_ ( X .\/ Q ) <-> P .<_ X ) ) | 
						
							| 39 | 38 | biimpa |  |-  ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> P .<_ X ) | 
						
							| 40 | 39 | expl |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> P .<_ X ) ) | 
						
							| 41 |  | simpl |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. HL ) | 
						
							| 42 |  | simpr2 |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. A ) | 
						
							| 43 | 2 3 5 | hlatlej2 |  |-  ( ( K e. HL /\ Q e. A /\ P e. A ) -> P .<_ ( Q .\/ P ) ) | 
						
							| 44 | 41 32 42 43 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P .<_ ( Q .\/ P ) ) | 
						
							| 45 | 40 44 | jctird |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) | 
						
							| 46 | 45 42 | jctild |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) ) | 
						
							| 47 | 46 | impl |  |-  ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) | 
						
							| 48 |  | breq1 |  |-  ( r = P -> ( r .<_ X <-> P .<_ X ) ) | 
						
							| 49 |  | oveq2 |  |-  ( r = P -> ( Q .\/ r ) = ( Q .\/ P ) ) | 
						
							| 50 | 49 | breq2d |  |-  ( r = P -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( Q .\/ P ) ) ) | 
						
							| 51 | 48 50 | anbi12d |  |-  ( r = P -> ( ( r .<_ X /\ P .<_ ( Q .\/ r ) ) <-> ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) | 
						
							| 52 | 51 | rspcev |  |-  ( ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) | 
						
							| 53 | 47 52 | syl |  |-  ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) | 
						
							| 54 | 53 | adantrl |  |-  ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) | 
						
							| 55 | 54 | exp31 |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .<_ X -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) | 
						
							| 56 |  | simpr |  |-  ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> P .<_ ( X .\/ Q ) ) | 
						
							| 57 |  | ioran |  |-  ( -. ( P = Q \/ Q .<_ X ) <-> ( -. P = Q /\ -. Q .<_ X ) ) | 
						
							| 58 |  | df-ne |  |-  ( P =/= Q <-> -. P = Q ) | 
						
							| 59 | 58 | anbi1i |  |-  ( ( P =/= Q /\ -. Q .<_ X ) <-> ( -. P = Q /\ -. Q .<_ X ) ) | 
						
							| 60 | 57 59 | bitr4i |  |-  ( -. ( P = Q \/ Q .<_ X ) <-> ( P =/= Q /\ -. Q .<_ X ) ) | 
						
							| 61 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 62 | 1 2 3 61 5 | cvrat3 |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) | 
						
							| 63 | 62 | 3expd |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P =/= Q -> ( -. Q .<_ X -> ( P .<_ ( X .\/ Q ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) ) ) | 
						
							| 64 | 63 | imp4c |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) | 
						
							| 65 | 1 5 | atbase |  |-  ( P e. A -> P e. B ) | 
						
							| 66 | 42 65 | syl |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. B ) | 
						
							| 67 | 1 3 | latjcl |  |-  ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) | 
						
							| 68 | 31 66 34 67 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B ) | 
						
							| 69 | 1 2 61 | latmle1 |  |-  ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) | 
						
							| 70 | 31 8 68 69 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) | 
						
							| 72 |  | simpll |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> K e. HL ) | 
						
							| 73 | 63 | imp44 |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) | 
						
							| 74 |  | simplr2 |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> P e. A ) | 
						
							| 75 | 34 | adantr |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> Q e. B ) | 
						
							| 76 | 73 74 75 | 3jca |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) | 
						
							| 77 | 72 76 | jca |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) ) | 
						
							| 78 | 1 2 61 4 5 | atnle |  |-  ( ( K e. AtLat /\ Q e. A /\ X e. B ) -> ( -. Q .<_ X <-> ( Q ( meet ` K ) X ) = .0. ) ) | 
						
							| 79 | 7 32 8 78 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X <-> ( Q ( meet ` K ) X ) = .0. ) ) | 
						
							| 80 | 1 61 | latmcom |  |-  ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q ( meet ` K ) X ) = ( X ( meet ` K ) Q ) ) | 
						
							| 81 | 31 34 8 80 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) X ) = ( X ( meet ` K ) Q ) ) | 
						
							| 82 | 81 | eqeq1d |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q ( meet ` K ) X ) = .0. <-> ( X ( meet ` K ) Q ) = .0. ) ) | 
						
							| 83 | 79 82 | bitrd |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X <-> ( X ( meet ` K ) Q ) = .0. ) ) | 
						
							| 84 | 1 61 | latmcl |  |-  ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) | 
						
							| 85 | 31 8 68 84 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) | 
						
							| 86 | 85 8 34 | 3jca |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) | 
						
							| 87 | 31 86 | jca |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( K e. Lat /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) ) | 
						
							| 88 | 1 2 61 | latmlem2 |  |-  ( ( K e. Lat /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( Q ( meet ` K ) X ) ) ) | 
						
							| 89 | 87 70 88 | sylc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( Q ( meet ` K ) X ) ) | 
						
							| 90 | 89 81 | breqtrd |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( X ( meet ` K ) Q ) ) | 
						
							| 91 |  | breq2 |  |-  ( ( X ( meet ` K ) Q ) = .0. -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( X ( meet ` K ) Q ) <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. ) ) | 
						
							| 92 | 90 91 | syl5ibcom |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) Q ) = .0. -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. ) ) | 
						
							| 93 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 94 | 93 | adantr |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. OP ) | 
						
							| 95 | 1 61 | latmcl |  |-  ( ( K e. Lat /\ Q e. B /\ ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) | 
						
							| 96 | 31 34 85 95 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) | 
						
							| 97 | 1 2 4 | ople0 |  |-  ( ( K e. OP /\ ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) | 
						
							| 98 | 94 96 97 | syl2anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) | 
						
							| 99 | 92 98 | sylibd |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) Q ) = .0. -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) | 
						
							| 100 | 83 99 | sylbid |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) | 
						
							| 101 | 100 | imp |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ -. Q .<_ X ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) | 
						
							| 102 | 101 | adantrl |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( P =/= Q /\ -. Q .<_ X ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) | 
						
							| 103 | 102 | adantrr |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) | 
						
							| 104 | 1 2 61 | latmle2 |  |-  ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( P .\/ Q ) ) | 
						
							| 105 | 31 8 68 104 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( P .\/ Q ) ) | 
						
							| 106 | 1 3 | latjcom |  |-  ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 107 | 31 66 34 106 | syl3anc |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 108 | 105 107 | breqtrd |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) ) | 
						
							| 110 | 30 | adantr |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> K e. Lat ) | 
						
							| 111 |  | simpr3 |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> Q e. B ) | 
						
							| 112 |  | simpr1 |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) | 
						
							| 113 | 1 5 | atbase |  |-  ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) | 
						
							| 114 | 112 113 | syl |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) | 
						
							| 115 | 1 61 | latmcom |  |-  ( ( K e. Lat /\ Q e. B /\ ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) ) | 
						
							| 116 | 110 111 114 115 | syl3anc |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) ) | 
						
							| 117 | 116 | eqeq1d |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. <-> ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. ) ) | 
						
							| 118 | 1 2 3 61 4 5 | hlexch3 |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) | 
						
							| 119 | 118 | 3expia |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) | 
						
							| 120 | 117 119 | sylbid |  |-  ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) | 
						
							| 121 | 77 103 109 120 | syl3c |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) | 
						
							| 122 | 71 121 | jca |  |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) | 
						
							| 123 | 122 | ex |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) | 
						
							| 124 | 64 123 | jcad |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) ) | 
						
							| 125 |  | breq1 |  |-  ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( r .<_ X <-> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) ) | 
						
							| 126 |  | oveq2 |  |-  ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( Q .\/ r ) = ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) | 
						
							| 127 | 126 | breq2d |  |-  ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) | 
						
							| 128 | 125 127 | anbi12d |  |-  ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( ( r .<_ X /\ P .<_ ( Q .\/ r ) ) <-> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) | 
						
							| 129 | 128 | rspcev |  |-  ( ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) | 
						
							| 130 | 124 129 | syl6 |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) | 
						
							| 131 | 130 | expd |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X ) -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) | 
						
							| 132 | 60 131 | biimtrid |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. ( P = Q \/ Q .<_ X ) -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) | 
						
							| 133 | 56 132 | syl7 |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. ( P = Q \/ Q .<_ X ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) | 
						
							| 134 | 29 55 133 | ecase3d |  |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |