Step |
Hyp |
Ref |
Expression |
1 |
|
cvrat4.b |
|- B = ( Base ` K ) |
2 |
|
cvrat4.l |
|- .<_ = ( le ` K ) |
3 |
|
cvrat4.j |
|- .\/ = ( join ` K ) |
4 |
|
cvrat4.z |
|- .0. = ( 0. ` K ) |
5 |
|
cvrat4.a |
|- A = ( Atoms ` K ) |
6 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
7 |
6
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. AtLat ) |
8 |
|
simpr1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B ) |
9 |
1 2 4 5
|
atlex |
|- ( ( K e. AtLat /\ X e. B /\ X =/= .0. ) -> E. r e. A r .<_ X ) |
10 |
9
|
3exp |
|- ( K e. AtLat -> ( X e. B -> ( X =/= .0. -> E. r e. A r .<_ X ) ) ) |
11 |
7 8 10
|
sylc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X =/= .0. -> E. r e. A r .<_ X ) ) |
12 |
11
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( X =/= .0. -> E. r e. A r .<_ X ) ) |
13 |
|
simpll |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> K e. HL ) |
14 |
|
simplr3 |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> Q e. A ) |
15 |
|
simpr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> r e. A ) |
16 |
2 3 5
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ r e. A ) -> Q .<_ ( Q .\/ r ) ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> Q .<_ ( Q .\/ r ) ) |
18 |
|
breq1 |
|- ( P = Q -> ( P .<_ ( Q .\/ r ) <-> Q .<_ ( Q .\/ r ) ) ) |
19 |
17 18
|
syl5ibr |
|- ( P = Q -> ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> P .<_ ( Q .\/ r ) ) ) |
20 |
19
|
expd |
|- ( P = Q -> ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( r e. A -> P .<_ ( Q .\/ r ) ) ) ) |
21 |
20
|
impcom |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( r e. A -> P .<_ ( Q .\/ r ) ) ) |
22 |
21
|
anim2d |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( ( r .<_ X /\ r e. A ) -> ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
23 |
22
|
expcomd |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( r e. A -> ( r .<_ X -> ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
24 |
23
|
reximdvai |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( E. r e. A r .<_ X -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
25 |
12 24
|
syld |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
26 |
25
|
ex |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
27 |
26
|
a1i |
|- ( P .<_ ( X .\/ Q ) -> ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) ) |
28 |
27
|
com4l |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) ) |
29 |
28
|
imp4a |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
30 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
31 |
30
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. Lat ) |
32 |
|
simpr3 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A ) |
33 |
1 5
|
atbase |
|- ( Q e. A -> Q e. B ) |
34 |
32 33
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. B ) |
35 |
1 2 3
|
latleeqj2 |
|- ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q .<_ X <-> ( X .\/ Q ) = X ) ) |
36 |
31 34 8 35
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .<_ X <-> ( X .\/ Q ) = X ) ) |
37 |
36
|
biimpa |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) -> ( X .\/ Q ) = X ) |
38 |
37
|
breq2d |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) -> ( P .<_ ( X .\/ Q ) <-> P .<_ X ) ) |
39 |
38
|
biimpa |
|- ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> P .<_ X ) |
40 |
39
|
expl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> P .<_ X ) ) |
41 |
|
simpl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. HL ) |
42 |
|
simpr2 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. A ) |
43 |
2 3 5
|
hlatlej2 |
|- ( ( K e. HL /\ Q e. A /\ P e. A ) -> P .<_ ( Q .\/ P ) ) |
44 |
41 32 42 43
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P .<_ ( Q .\/ P ) ) |
45 |
40 44
|
jctird |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) |
46 |
45 42
|
jctild |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) ) |
47 |
46
|
impl |
|- ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) |
48 |
|
breq1 |
|- ( r = P -> ( r .<_ X <-> P .<_ X ) ) |
49 |
|
oveq2 |
|- ( r = P -> ( Q .\/ r ) = ( Q .\/ P ) ) |
50 |
49
|
breq2d |
|- ( r = P -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( Q .\/ P ) ) ) |
51 |
48 50
|
anbi12d |
|- ( r = P -> ( ( r .<_ X /\ P .<_ ( Q .\/ r ) ) <-> ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) |
52 |
51
|
rspcev |
|- ( ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) |
53 |
47 52
|
syl |
|- ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) |
54 |
53
|
adantrl |
|- ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) |
55 |
54
|
exp31 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .<_ X -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
56 |
|
simpr |
|- ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> P .<_ ( X .\/ Q ) ) |
57 |
|
ioran |
|- ( -. ( P = Q \/ Q .<_ X ) <-> ( -. P = Q /\ -. Q .<_ X ) ) |
58 |
|
df-ne |
|- ( P =/= Q <-> -. P = Q ) |
59 |
58
|
anbi1i |
|- ( ( P =/= Q /\ -. Q .<_ X ) <-> ( -. P = Q /\ -. Q .<_ X ) ) |
60 |
57 59
|
bitr4i |
|- ( -. ( P = Q \/ Q .<_ X ) <-> ( P =/= Q /\ -. Q .<_ X ) ) |
61 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
62 |
1 2 3 61 5
|
cvrat3 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) |
63 |
62
|
3expd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P =/= Q -> ( -. Q .<_ X -> ( P .<_ ( X .\/ Q ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) ) ) |
64 |
63
|
imp4c |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) |
65 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
66 |
42 65
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. B ) |
67 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) |
68 |
31 66 34 67
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B ) |
69 |
1 2 61
|
latmle1 |
|- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) |
70 |
31 8 68 69
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) |
71 |
70
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) |
72 |
|
simpll |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> K e. HL ) |
73 |
63
|
imp44 |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) |
74 |
|
simplr2 |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> P e. A ) |
75 |
34
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> Q e. B ) |
76 |
73 74 75
|
3jca |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) |
77 |
72 76
|
jca |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) ) |
78 |
1 2 61 4 5
|
atnle |
|- ( ( K e. AtLat /\ Q e. A /\ X e. B ) -> ( -. Q .<_ X <-> ( Q ( meet ` K ) X ) = .0. ) ) |
79 |
7 32 8 78
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X <-> ( Q ( meet ` K ) X ) = .0. ) ) |
80 |
1 61
|
latmcom |
|- ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q ( meet ` K ) X ) = ( X ( meet ` K ) Q ) ) |
81 |
31 34 8 80
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) X ) = ( X ( meet ` K ) Q ) ) |
82 |
81
|
eqeq1d |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q ( meet ` K ) X ) = .0. <-> ( X ( meet ` K ) Q ) = .0. ) ) |
83 |
79 82
|
bitrd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X <-> ( X ( meet ` K ) Q ) = .0. ) ) |
84 |
1 61
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) |
85 |
31 8 68 84
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) |
86 |
85 8 34
|
3jca |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) |
87 |
31 86
|
jca |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( K e. Lat /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) ) |
88 |
1 2 61
|
latmlem2 |
|- ( ( K e. Lat /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( Q ( meet ` K ) X ) ) ) |
89 |
87 70 88
|
sylc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( Q ( meet ` K ) X ) ) |
90 |
89 81
|
breqtrd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( X ( meet ` K ) Q ) ) |
91 |
|
breq2 |
|- ( ( X ( meet ` K ) Q ) = .0. -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( X ( meet ` K ) Q ) <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. ) ) |
92 |
90 91
|
syl5ibcom |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) Q ) = .0. -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. ) ) |
93 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
94 |
93
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. OP ) |
95 |
1 61
|
latmcl |
|- ( ( K e. Lat /\ Q e. B /\ ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) |
96 |
31 34 85 95
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) |
97 |
1 2 4
|
ople0 |
|- ( ( K e. OP /\ ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) |
98 |
94 96 97
|
syl2anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) |
99 |
92 98
|
sylibd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) Q ) = .0. -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) |
100 |
83 99
|
sylbid |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) |
101 |
100
|
imp |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ -. Q .<_ X ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) |
102 |
101
|
adantrl |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( P =/= Q /\ -. Q .<_ X ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) |
103 |
102
|
adantrr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) |
104 |
1 2 61
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( P .\/ Q ) ) |
105 |
31 8 68 104
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( P .\/ Q ) ) |
106 |
1 3
|
latjcom |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
107 |
31 66 34 106
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
108 |
105 107
|
breqtrd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) ) |
109 |
108
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) ) |
110 |
30
|
adantr |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> K e. Lat ) |
111 |
|
simpr3 |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> Q e. B ) |
112 |
|
simpr1 |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) |
113 |
1 5
|
atbase |
|- ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) |
114 |
112 113
|
syl |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) |
115 |
1 61
|
latmcom |
|- ( ( K e. Lat /\ Q e. B /\ ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) ) |
116 |
110 111 114 115
|
syl3anc |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) ) |
117 |
116
|
eqeq1d |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. <-> ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. ) ) |
118 |
1 2 3 61 4 5
|
hlexch3 |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) |
119 |
118
|
3expia |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) |
120 |
117 119
|
sylbid |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) |
121 |
77 103 109 120
|
syl3c |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) |
122 |
71 121
|
jca |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) |
123 |
122
|
ex |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) |
124 |
64 123
|
jcad |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) ) |
125 |
|
breq1 |
|- ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( r .<_ X <-> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) ) |
126 |
|
oveq2 |
|- ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( Q .\/ r ) = ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) |
127 |
126
|
breq2d |
|- ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) |
128 |
125 127
|
anbi12d |
|- ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( ( r .<_ X /\ P .<_ ( Q .\/ r ) ) <-> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) |
129 |
128
|
rspcev |
|- ( ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) |
130 |
124 129
|
syl6 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
131 |
130
|
expd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X ) -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
132 |
60 131
|
syl5bi |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. ( P = Q \/ Q .<_ X ) -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
133 |
56 132
|
syl7 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. ( P = Q \/ Q .<_ X ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
134 |
29 55 133
|
ecase3d |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |