Description: The covers relation implies the less-than relation. ( cvpss analog.) (Contributed by NM, 8-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrfval.b | |- B = ( Base ` K )  | 
					|
| cvrfval.s | |- .< = ( lt ` K )  | 
					||
| cvrfval.c | |- C = (  | 
					||
| Assertion | cvrlt | |- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .< Y )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cvrfval.b | |- B = ( Base ` K )  | 
						|
| 2 | cvrfval.s | |- .< = ( lt ` K )  | 
						|
| 3 | cvrfval.c | |- C = (  | 
						|
| 4 | 1 2 3 | cvrval | |- ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) ) )  | 
						
| 5 | 4 | simprbda | |- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .< Y )  |