Metamath Proof Explorer


Theorem cvrlt

Description: The covers relation implies the less-than relation. ( cvpss analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses cvrfval.b
|- B = ( Base ` K )
cvrfval.s
|- .< = ( lt ` K )
cvrfval.c
|- C = ( 
Assertion cvrlt
|- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .< Y )

Proof

Step Hyp Ref Expression
1 cvrfval.b
 |-  B = ( Base ` K )
2 cvrfval.s
 |-  .< = ( lt ` K )
3 cvrfval.c
 |-  C = ( 
4 1 2 3 cvrval
 |-  ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) ) )
5 4 simprbda
 |-  ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .< Y )