Description: The covers relation implies the less-than relation. ( cvpss analog.) (Contributed by NM, 8-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cvrfval.b | |- B = ( Base ` K ) |
|
cvrfval.s | |- .< = ( lt ` K ) |
||
cvrfval.c | |- C = ( |
||
Assertion | cvrlt | |- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .< Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrfval.b | |- B = ( Base ` K ) |
|
2 | cvrfval.s | |- .< = ( lt ` K ) |
|
3 | cvrfval.c | |- C = ( |
|
4 | 1 2 3 | cvrval | |- ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) ) ) |
5 | 4 | simprbda | |- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .< Y ) |