Step |
Hyp |
Ref |
Expression |
1 |
|
cvrletr.b |
|- B = ( Base ` K ) |
2 |
|
cvrletr.l |
|- .<_ = ( le ` K ) |
3 |
|
cvrletr.s |
|- .< = ( lt ` K ) |
4 |
|
cvrletr.c |
|- C = ( |
5 |
1 3 4
|
cvrnbtwn |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> -. ( X .< Z /\ Z .< Y ) ) |
6 |
2 3
|
pltval |
|- ( ( K e. Poset /\ X e. B /\ Z e. B ) -> ( X .< Z <-> ( X .<_ Z /\ X =/= Z ) ) ) |
7 |
6
|
3adant3r2 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .< Z <-> ( X .<_ Z /\ X =/= Z ) ) ) |
8 |
7
|
3adant3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( X .< Z <-> ( X .<_ Z /\ X =/= Z ) ) ) |
9 |
8
|
anbi1d |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .< Z /\ Z .< Y ) <-> ( ( X .<_ Z /\ X =/= Z ) /\ Z .< Y ) ) ) |
10 |
9
|
notbid |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( -. ( X .< Z /\ Z .< Y ) <-> -. ( ( X .<_ Z /\ X =/= Z ) /\ Z .< Y ) ) ) |
11 |
|
an32 |
|- ( ( ( X .<_ Z /\ X =/= Z ) /\ Z .< Y ) <-> ( ( X .<_ Z /\ Z .< Y ) /\ X =/= Z ) ) |
12 |
|
df-ne |
|- ( X =/= Z <-> -. X = Z ) |
13 |
12
|
anbi2i |
|- ( ( ( X .<_ Z /\ Z .< Y ) /\ X =/= Z ) <-> ( ( X .<_ Z /\ Z .< Y ) /\ -. X = Z ) ) |
14 |
11 13
|
bitri |
|- ( ( ( X .<_ Z /\ X =/= Z ) /\ Z .< Y ) <-> ( ( X .<_ Z /\ Z .< Y ) /\ -. X = Z ) ) |
15 |
14
|
notbii |
|- ( -. ( ( X .<_ Z /\ X =/= Z ) /\ Z .< Y ) <-> -. ( ( X .<_ Z /\ Z .< Y ) /\ -. X = Z ) ) |
16 |
|
iman |
|- ( ( ( X .<_ Z /\ Z .< Y ) -> X = Z ) <-> -. ( ( X .<_ Z /\ Z .< Y ) /\ -. X = Z ) ) |
17 |
15 16
|
bitr4i |
|- ( -. ( ( X .<_ Z /\ X =/= Z ) /\ Z .< Y ) <-> ( ( X .<_ Z /\ Z .< Y ) -> X = Z ) ) |
18 |
10 17
|
bitrdi |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( -. ( X .< Z /\ Z .< Y ) <-> ( ( X .<_ Z /\ Z .< Y ) -> X = Z ) ) ) |
19 |
5 18
|
mpbid |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .<_ Z /\ Z .< Y ) -> X = Z ) ) |
20 |
1 2
|
posref |
|- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |
21 |
|
breq2 |
|- ( X = Z -> ( X .<_ X <-> X .<_ Z ) ) |
22 |
20 21
|
syl5ibcom |
|- ( ( K e. Poset /\ X e. B ) -> ( X = Z -> X .<_ Z ) ) |
23 |
22
|
3ad2antr1 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X = Z -> X .<_ Z ) ) |
24 |
23
|
3adant3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( X = Z -> X .<_ Z ) ) |
25 |
|
simp1 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> K e. Poset ) |
26 |
|
simp21 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> X e. B ) |
27 |
|
simp22 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> Y e. B ) |
28 |
|
simp3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> X C Y ) |
29 |
1 3 4
|
cvrlt |
|- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .< Y ) |
30 |
25 26 27 28 29
|
syl31anc |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> X .< Y ) |
31 |
|
breq1 |
|- ( X = Z -> ( X .< Y <-> Z .< Y ) ) |
32 |
30 31
|
syl5ibcom |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( X = Z -> Z .< Y ) ) |
33 |
24 32
|
jcad |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( X = Z -> ( X .<_ Z /\ Z .< Y ) ) ) |
34 |
19 33
|
impbid |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .<_ Z /\ Z .< Y ) <-> X = Z ) ) |