Step |
Hyp |
Ref |
Expression |
1 |
|
cvrle.b |
|- B = ( Base ` K ) |
2 |
|
cvrle.l |
|- .<_ = ( le ` K ) |
3 |
|
cvrle.c |
|- C = ( |
4 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
5 |
1 4 3
|
cvrnbtwn |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> -. ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) ) |
6 |
|
iman |
|- ( ( ( X .<_ Z /\ Z .<_ Y ) -> ( X = Z \/ Z = Y ) ) <-> -. ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) ) |
7 |
|
neanior |
|- ( ( X =/= Z /\ Z =/= Y ) <-> -. ( X = Z \/ Z = Y ) ) |
8 |
7
|
anbi2i |
|- ( ( ( X .<_ Z /\ Z .<_ Y ) /\ ( X =/= Z /\ Z =/= Y ) ) <-> ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) ) |
9 |
|
an4 |
|- ( ( ( X .<_ Z /\ Z .<_ Y ) /\ ( X =/= Z /\ Z =/= Y ) ) <-> ( ( X .<_ Z /\ X =/= Z ) /\ ( Z .<_ Y /\ Z =/= Y ) ) ) |
10 |
8 9
|
bitr3i |
|- ( ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) <-> ( ( X .<_ Z /\ X =/= Z ) /\ ( Z .<_ Y /\ Z =/= Y ) ) ) |
11 |
2 4
|
pltval |
|- ( ( K e. Poset /\ X e. B /\ Z e. B ) -> ( X ( lt ` K ) Z <-> ( X .<_ Z /\ X =/= Z ) ) ) |
12 |
11
|
3adant3r2 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ( lt ` K ) Z <-> ( X .<_ Z /\ X =/= Z ) ) ) |
13 |
2 4
|
pltval |
|- ( ( K e. Poset /\ Z e. B /\ Y e. B ) -> ( Z ( lt ` K ) Y <-> ( Z .<_ Y /\ Z =/= Y ) ) ) |
14 |
13
|
3com23 |
|- ( ( K e. Poset /\ Y e. B /\ Z e. B ) -> ( Z ( lt ` K ) Y <-> ( Z .<_ Y /\ Z =/= Y ) ) ) |
15 |
14
|
3adant3r1 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Z ( lt ` K ) Y <-> ( Z .<_ Y /\ Z =/= Y ) ) ) |
16 |
12 15
|
anbi12d |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) <-> ( ( X .<_ Z /\ X =/= Z ) /\ ( Z .<_ Y /\ Z =/= Y ) ) ) ) |
17 |
10 16
|
bitr4id |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) <-> ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) ) ) |
18 |
17
|
notbid |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) <-> -. ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) ) ) |
19 |
6 18
|
bitr2id |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) <-> ( ( X .<_ Z /\ Z .<_ Y ) -> ( X = Z \/ Z = Y ) ) ) ) |
20 |
19
|
3adant3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( -. ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) <-> ( ( X .<_ Z /\ Z .<_ Y ) -> ( X = Z \/ Z = Y ) ) ) ) |
21 |
5 20
|
mpbid |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .<_ Z /\ Z .<_ Y ) -> ( X = Z \/ Z = Y ) ) ) |
22 |
1 2
|
posref |
|- ( ( K e. Poset /\ Z e. B ) -> Z .<_ Z ) |
23 |
22
|
3ad2antr3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z .<_ Z ) |
24 |
23
|
3adant3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> Z .<_ Z ) |
25 |
|
breq1 |
|- ( X = Z -> ( X .<_ Z <-> Z .<_ Z ) ) |
26 |
24 25
|
syl5ibrcom |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( X = Z -> X .<_ Z ) ) |
27 |
1 2 3
|
cvrle |
|- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .<_ Y ) |
28 |
27
|
ex |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X C Y -> X .<_ Y ) ) |
29 |
28
|
3adant3r3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y -> X .<_ Y ) ) |
30 |
29
|
3impia |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> X .<_ Y ) |
31 |
|
breq2 |
|- ( Z = Y -> ( X .<_ Z <-> X .<_ Y ) ) |
32 |
30 31
|
syl5ibrcom |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( Z = Y -> X .<_ Z ) ) |
33 |
26 32
|
jaod |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X = Z \/ Z = Y ) -> X .<_ Z ) ) |
34 |
|
breq1 |
|- ( X = Z -> ( X .<_ Y <-> Z .<_ Y ) ) |
35 |
30 34
|
syl5ibcom |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( X = Z -> Z .<_ Y ) ) |
36 |
|
breq2 |
|- ( Z = Y -> ( Z .<_ Z <-> Z .<_ Y ) ) |
37 |
24 36
|
syl5ibcom |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( Z = Y -> Z .<_ Y ) ) |
38 |
35 37
|
jaod |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X = Z \/ Z = Y ) -> Z .<_ Y ) ) |
39 |
33 38
|
jcad |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X = Z \/ Z = Y ) -> ( X .<_ Z /\ Z .<_ Y ) ) ) |
40 |
21 39
|
impbid |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .<_ Z /\ Z .<_ Y ) <-> ( X = Z \/ Z = Y ) ) ) |