Description: The covers relation implies inequality. (Contributed by NM, 13-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrne.b | |- B = ( Base ` K )  | 
					|
| cvrne.c | |- C = (  | 
					||
| Assertion | cvrne | |- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X =/= Y )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cvrne.b | |- B = ( Base ` K )  | 
						|
| 2 | cvrne.c | |- C = (  | 
						|
| 3 | eqid | |- ( lt ` K ) = ( lt ` K )  | 
						|
| 4 | 1 3 2 | cvrlt | |- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X ( lt ` K ) Y )  | 
						
| 5 | eqid | |- ( le ` K ) = ( le ` K )  | 
						|
| 6 | 5 3 | pltval | |- ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X ( lt ` K ) Y <-> ( X ( le ` K ) Y /\ X =/= Y ) ) )  | 
						
| 7 | 6 | simplbda | |- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X ( lt ` K ) Y ) -> X =/= Y )  | 
						
| 8 | 4 7 | syldan | |- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X =/= Y )  |