Description: The covers relation implies the negation of the converse "less than or equal to" relation. (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrle.b | |- B = ( Base ` K ) |
|
| cvrle.l | |- .<_ = ( le ` K ) |
||
| cvrle.c | |- C = ( |
||
| Assertion | cvrnle | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X C Y ) -> -. Y .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrle.b | |- B = ( Base ` K ) |
|
| 2 | cvrle.l | |- .<_ = ( le ` K ) |
|
| 3 | cvrle.c | |- C = ( |
|
| 4 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 5 | 1 4 3 | cvrlt | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X C Y ) -> X ( lt ` K ) Y ) |
| 6 | 1 2 4 | pltnle | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X ( lt ` K ) Y ) -> -. Y .<_ X ) |
| 7 | 5 6 | syldan | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X C Y ) -> -. Y .<_ X ) |