Step |
Hyp |
Ref |
Expression |
1 |
|
cvrne.b |
|- B = ( Base ` K ) |
2 |
|
cvrne.c |
|- C = ( |
3 |
|
eqid |
|- X = X |
4 |
|
simpll |
|- ( ( ( K e. A /\ X e. B ) /\ X C X ) -> K e. A ) |
5 |
|
simplr |
|- ( ( ( K e. A /\ X e. B ) /\ X C X ) -> X e. B ) |
6 |
|
simpr |
|- ( ( ( K e. A /\ X e. B ) /\ X C X ) -> X C X ) |
7 |
1 2
|
cvrne |
|- ( ( ( K e. A /\ X e. B /\ X e. B ) /\ X C X ) -> X =/= X ) |
8 |
4 5 5 6 7
|
syl31anc |
|- ( ( ( K e. A /\ X e. B ) /\ X C X ) -> X =/= X ) |
9 |
8
|
ex |
|- ( ( K e. A /\ X e. B ) -> ( X C X -> X =/= X ) ) |
10 |
9
|
necon2bd |
|- ( ( K e. A /\ X e. B ) -> ( X = X -> -. X C X ) ) |
11 |
3 10
|
mpi |
|- ( ( K e. A /\ X e. B ) -> -. X C X ) |