Step |
Hyp |
Ref |
Expression |
1 |
|
cvsdiveqd.v |
|- V = ( Base ` W ) |
2 |
|
cvsdiveqd.t |
|- .x. = ( .s ` W ) |
3 |
|
cvsdiveqd.f |
|- F = ( Scalar ` W ) |
4 |
|
cvsdiveqd.k |
|- K = ( Base ` F ) |
5 |
|
cvsdiveqd.w |
|- ( ph -> W e. CVec ) |
6 |
|
cvsdiveqd.a |
|- ( ph -> A e. K ) |
7 |
|
cvsdiveqd.b |
|- ( ph -> B e. K ) |
8 |
|
cvsdiveqd.x |
|- ( ph -> X e. V ) |
9 |
|
cvsdiveqd.y |
|- ( ph -> Y e. V ) |
10 |
|
cvsdiveqd.1 |
|- ( ph -> A =/= 0 ) |
11 |
|
cvsdiveqd.2 |
|- ( ph -> B =/= 0 ) |
12 |
|
cvsdiveqd.3 |
|- ( ph -> X = ( ( A / B ) .x. Y ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( ( B / A ) .x. X ) = ( ( B / A ) .x. ( ( A / B ) .x. Y ) ) ) |
14 |
5
|
cvsclm |
|- ( ph -> W e. CMod ) |
15 |
3 4
|
clmsscn |
|- ( W e. CMod -> K C_ CC ) |
16 |
14 15
|
syl |
|- ( ph -> K C_ CC ) |
17 |
16 7
|
sseldd |
|- ( ph -> B e. CC ) |
18 |
16 6
|
sseldd |
|- ( ph -> A e. CC ) |
19 |
17 18 11 10
|
divcan6d |
|- ( ph -> ( ( B / A ) x. ( A / B ) ) = 1 ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( ( B / A ) x. ( A / B ) ) .x. Y ) = ( 1 .x. Y ) ) |
21 |
3 4
|
cvsdivcl |
|- ( ( W e. CVec /\ ( B e. K /\ A e. K /\ A =/= 0 ) ) -> ( B / A ) e. K ) |
22 |
5 7 6 10 21
|
syl13anc |
|- ( ph -> ( B / A ) e. K ) |
23 |
3 4
|
cvsdivcl |
|- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) e. K ) |
24 |
5 6 7 11 23
|
syl13anc |
|- ( ph -> ( A / B ) e. K ) |
25 |
1 3 2 4
|
clmvsass |
|- ( ( W e. CMod /\ ( ( B / A ) e. K /\ ( A / B ) e. K /\ Y e. V ) ) -> ( ( ( B / A ) x. ( A / B ) ) .x. Y ) = ( ( B / A ) .x. ( ( A / B ) .x. Y ) ) ) |
26 |
14 22 24 9 25
|
syl13anc |
|- ( ph -> ( ( ( B / A ) x. ( A / B ) ) .x. Y ) = ( ( B / A ) .x. ( ( A / B ) .x. Y ) ) ) |
27 |
1 2
|
clmvs1 |
|- ( ( W e. CMod /\ Y e. V ) -> ( 1 .x. Y ) = Y ) |
28 |
14 9 27
|
syl2anc |
|- ( ph -> ( 1 .x. Y ) = Y ) |
29 |
20 26 28
|
3eqtr3d |
|- ( ph -> ( ( B / A ) .x. ( ( A / B ) .x. Y ) ) = Y ) |
30 |
13 29
|
eqtrd |
|- ( ph -> ( ( B / A ) .x. X ) = Y ) |