Step |
Hyp |
Ref |
Expression |
1 |
|
cvsdiveqd.v |
|- V = ( Base ` W ) |
2 |
|
cvsdiveqd.t |
|- .x. = ( .s ` W ) |
3 |
|
cvsdiveqd.f |
|- F = ( Scalar ` W ) |
4 |
|
cvsdiveqd.k |
|- K = ( Base ` F ) |
5 |
|
cvsdiveqd.w |
|- ( ph -> W e. CVec ) |
6 |
|
cvsdiveqd.a |
|- ( ph -> A e. K ) |
7 |
|
cvsdiveqd.b |
|- ( ph -> B e. K ) |
8 |
|
cvsdiveqd.x |
|- ( ph -> X e. V ) |
9 |
|
cvsdiveqd.y |
|- ( ph -> Y e. V ) |
10 |
|
cvsdiveqd.1 |
|- ( ph -> A =/= 0 ) |
11 |
|
cvsmuleqdivd.1 |
|- ( ph -> ( A .x. X ) = ( B .x. Y ) ) |
12 |
11
|
oveq2d |
|- ( ph -> ( ( 1 / A ) .x. ( A .x. X ) ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
13 |
5
|
cvsclm |
|- ( ph -> W e. CMod ) |
14 |
3 4
|
clmsscn |
|- ( W e. CMod -> K C_ CC ) |
15 |
13 14
|
syl |
|- ( ph -> K C_ CC ) |
16 |
15 6
|
sseldd |
|- ( ph -> A e. CC ) |
17 |
16 10
|
recid2d |
|- ( ph -> ( ( 1 / A ) x. A ) = 1 ) |
18 |
17
|
oveq1d |
|- ( ph -> ( ( ( 1 / A ) x. A ) .x. X ) = ( 1 .x. X ) ) |
19 |
3
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` F ) ) |
20 |
13 19
|
syl |
|- ( ph -> 1 = ( 1r ` F ) ) |
21 |
3
|
clmring |
|- ( W e. CMod -> F e. Ring ) |
22 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
23 |
4 22
|
ringidcl |
|- ( F e. Ring -> ( 1r ` F ) e. K ) |
24 |
13 21 23
|
3syl |
|- ( ph -> ( 1r ` F ) e. K ) |
25 |
20 24
|
eqeltrd |
|- ( ph -> 1 e. K ) |
26 |
3 4
|
cvsdivcl |
|- ( ( W e. CVec /\ ( 1 e. K /\ A e. K /\ A =/= 0 ) ) -> ( 1 / A ) e. K ) |
27 |
5 25 6 10 26
|
syl13anc |
|- ( ph -> ( 1 / A ) e. K ) |
28 |
1 3 2 4
|
clmvsass |
|- ( ( W e. CMod /\ ( ( 1 / A ) e. K /\ A e. K /\ X e. V ) ) -> ( ( ( 1 / A ) x. A ) .x. X ) = ( ( 1 / A ) .x. ( A .x. X ) ) ) |
29 |
13 27 6 8 28
|
syl13anc |
|- ( ph -> ( ( ( 1 / A ) x. A ) .x. X ) = ( ( 1 / A ) .x. ( A .x. X ) ) ) |
30 |
1 2
|
clmvs1 |
|- ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = X ) |
31 |
13 8 30
|
syl2anc |
|- ( ph -> ( 1 .x. X ) = X ) |
32 |
18 29 31
|
3eqtr3d |
|- ( ph -> ( ( 1 / A ) .x. ( A .x. X ) ) = X ) |
33 |
15 7
|
sseldd |
|- ( ph -> B e. CC ) |
34 |
33 16 10
|
divrec2d |
|- ( ph -> ( B / A ) = ( ( 1 / A ) x. B ) ) |
35 |
34
|
oveq1d |
|- ( ph -> ( ( B / A ) .x. Y ) = ( ( ( 1 / A ) x. B ) .x. Y ) ) |
36 |
1 3 2 4
|
clmvsass |
|- ( ( W e. CMod /\ ( ( 1 / A ) e. K /\ B e. K /\ Y e. V ) ) -> ( ( ( 1 / A ) x. B ) .x. Y ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
37 |
13 27 7 9 36
|
syl13anc |
|- ( ph -> ( ( ( 1 / A ) x. B ) .x. Y ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
38 |
35 37
|
eqtr2d |
|- ( ph -> ( ( 1 / A ) .x. ( B .x. Y ) ) = ( ( B / A ) .x. Y ) ) |
39 |
12 32 38
|
3eqtr3d |
|- ( ph -> X = ( ( B / A ) .x. Y ) ) |