| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvsdiv.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | cvsdiv.k |  |-  K = ( Base ` F ) | 
						
							| 3 |  | id |  |-  ( W e. CVec -> W e. CVec ) | 
						
							| 4 | 3 | cvsclm |  |-  ( W e. CVec -> W e. CMod ) | 
						
							| 5 | 1 | clm0 |  |-  ( W e. CMod -> 0 = ( 0g ` F ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( W e. CVec -> 0 = ( 0g ` F ) ) | 
						
							| 7 | 6 | sneqd |  |-  ( W e. CVec -> { 0 } = { ( 0g ` F ) } ) | 
						
							| 8 | 7 | difeq2d |  |-  ( W e. CVec -> ( K \ { 0 } ) = ( K \ { ( 0g ` F ) } ) ) | 
						
							| 9 | 3 | cvslvec |  |-  ( W e. CVec -> W e. LVec ) | 
						
							| 10 | 1 | lvecdrng |  |-  ( W e. LVec -> F e. DivRing ) | 
						
							| 11 |  | eqid |  |-  ( Unit ` F ) = ( Unit ` F ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 13 | 2 11 12 | isdrng |  |-  ( F e. DivRing <-> ( F e. Ring /\ ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) ) | 
						
							| 14 | 13 | simprbi |  |-  ( F e. DivRing -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) | 
						
							| 15 | 9 10 14 | 3syl |  |-  ( W e. CVec -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) | 
						
							| 16 | 8 15 | eqtr4d |  |-  ( W e. CVec -> ( K \ { 0 } ) = ( Unit ` F ) ) |