Step |
Hyp |
Ref |
Expression |
1 |
|
cvxcl.1 |
|- ( ph -> D C_ RR ) |
2 |
|
cvxcl.2 |
|- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x [,] y ) C_ D ) |
3 |
2
|
ralrimivva |
|- ( ph -> A. x e. D A. y e. D ( x [,] y ) C_ D ) |
4 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> A. x e. D A. y e. D ( x [,] y ) C_ D ) |
5 |
|
simpr1 |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> X e. D ) |
6 |
|
simpr2 |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> Y e. D ) |
7 |
|
oveq1 |
|- ( x = X -> ( x [,] y ) = ( X [,] y ) ) |
8 |
7
|
sseq1d |
|- ( x = X -> ( ( x [,] y ) C_ D <-> ( X [,] y ) C_ D ) ) |
9 |
|
oveq2 |
|- ( y = Y -> ( X [,] y ) = ( X [,] Y ) ) |
10 |
9
|
sseq1d |
|- ( y = Y -> ( ( X [,] y ) C_ D <-> ( X [,] Y ) C_ D ) ) |
11 |
8 10
|
rspc2v |
|- ( ( X e. D /\ Y e. D ) -> ( A. x e. D A. y e. D ( x [,] y ) C_ D -> ( X [,] Y ) C_ D ) ) |
12 |
5 6 11
|
syl2anc |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( A. x e. D A. y e. D ( x [,] y ) C_ D -> ( X [,] Y ) C_ D ) ) |
13 |
12
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> ( A. x e. D A. y e. D ( x [,] y ) C_ D -> ( X [,] Y ) C_ D ) ) |
14 |
4 13
|
mpd |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> ( X [,] Y ) C_ D ) |
15 |
|
ax-1cn |
|- 1 e. CC |
16 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
17 |
|
simpr3 |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> T e. ( 0 [,] 1 ) ) |
18 |
16 17
|
sselid |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> T e. RR ) |
19 |
18
|
recnd |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> T e. CC ) |
20 |
|
nncan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
21 |
15 19 20
|
sylancr |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 - ( 1 - T ) ) = T ) |
22 |
21
|
oveq1d |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - ( 1 - T ) ) x. X ) = ( T x. X ) ) |
23 |
22
|
oveq1d |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - ( 1 - T ) ) x. X ) + ( ( 1 - T ) x. Y ) ) = ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) ) |
24 |
23
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> ( ( ( 1 - ( 1 - T ) ) x. X ) + ( ( 1 - T ) x. Y ) ) = ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) ) |
25 |
1
|
adantr |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> D C_ RR ) |
26 |
25 5
|
sseldd |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> X e. RR ) |
27 |
26
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> X e. RR ) |
28 |
25 6
|
sseldd |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> Y e. RR ) |
29 |
28
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> Y e. RR ) |
30 |
|
simpr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> X < Y ) |
31 |
|
simplr3 |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> T e. ( 0 [,] 1 ) ) |
32 |
|
iirev |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
33 |
31 32
|
syl |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
34 |
|
lincmb01cmp |
|- ( ( ( X e. RR /\ Y e. RR /\ X < Y ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. X ) + ( ( 1 - T ) x. Y ) ) e. ( X [,] Y ) ) |
35 |
27 29 30 33 34
|
syl31anc |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> ( ( ( 1 - ( 1 - T ) ) x. X ) + ( ( 1 - T ) x. Y ) ) e. ( X [,] Y ) ) |
36 |
24 35
|
eqeltrrd |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) e. ( X [,] Y ) ) |
37 |
14 36
|
sseldd |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X < Y ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) e. D ) |
38 |
|
oveq2 |
|- ( X = Y -> ( T x. X ) = ( T x. Y ) ) |
39 |
38
|
oveq1d |
|- ( X = Y -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) = ( ( T x. Y ) + ( ( 1 - T ) x. Y ) ) ) |
40 |
|
pncan3 |
|- ( ( T e. CC /\ 1 e. CC ) -> ( T + ( 1 - T ) ) = 1 ) |
41 |
19 15 40
|
sylancl |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( T + ( 1 - T ) ) = 1 ) |
42 |
41
|
oveq1d |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T + ( 1 - T ) ) x. Y ) = ( 1 x. Y ) ) |
43 |
|
1re |
|- 1 e. RR |
44 |
|
resubcl |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
45 |
43 18 44
|
sylancr |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 - T ) e. RR ) |
46 |
45
|
recnd |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 - T ) e. CC ) |
47 |
28
|
recnd |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> Y e. CC ) |
48 |
19 46 47
|
adddird |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T + ( 1 - T ) ) x. Y ) = ( ( T x. Y ) + ( ( 1 - T ) x. Y ) ) ) |
49 |
47
|
mulid2d |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 x. Y ) = Y ) |
50 |
42 48 49
|
3eqtr3d |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. Y ) + ( ( 1 - T ) x. Y ) ) = Y ) |
51 |
39 50
|
sylan9eqr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X = Y ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) = Y ) |
52 |
6
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X = Y ) -> Y e. D ) |
53 |
51 52
|
eqeltrd |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ X = Y ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) e. D ) |
54 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> A. x e. D A. y e. D ( x [,] y ) C_ D ) |
55 |
|
oveq1 |
|- ( x = Y -> ( x [,] y ) = ( Y [,] y ) ) |
56 |
55
|
sseq1d |
|- ( x = Y -> ( ( x [,] y ) C_ D <-> ( Y [,] y ) C_ D ) ) |
57 |
|
oveq2 |
|- ( y = X -> ( Y [,] y ) = ( Y [,] X ) ) |
58 |
57
|
sseq1d |
|- ( y = X -> ( ( Y [,] y ) C_ D <-> ( Y [,] X ) C_ D ) ) |
59 |
56 58
|
rspc2v |
|- ( ( Y e. D /\ X e. D ) -> ( A. x e. D A. y e. D ( x [,] y ) C_ D -> ( Y [,] X ) C_ D ) ) |
60 |
6 5 59
|
syl2anc |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( A. x e. D A. y e. D ( x [,] y ) C_ D -> ( Y [,] X ) C_ D ) ) |
61 |
60
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> ( A. x e. D A. y e. D ( x [,] y ) C_ D -> ( Y [,] X ) C_ D ) ) |
62 |
54 61
|
mpd |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> ( Y [,] X ) C_ D ) |
63 |
26
|
recnd |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> X e. CC ) |
64 |
19 63
|
mulcld |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. X ) e. CC ) |
65 |
46 47
|
mulcld |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. Y ) e. CC ) |
66 |
64 65
|
addcomd |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) = ( ( ( 1 - T ) x. Y ) + ( T x. X ) ) ) |
67 |
66
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) = ( ( ( 1 - T ) x. Y ) + ( T x. X ) ) ) |
68 |
28
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> Y e. RR ) |
69 |
26
|
adantr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> X e. RR ) |
70 |
|
simpr |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> Y < X ) |
71 |
|
simplr3 |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> T e. ( 0 [,] 1 ) ) |
72 |
|
lincmb01cmp |
|- ( ( ( Y e. RR /\ X e. RR /\ Y < X ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. Y ) + ( T x. X ) ) e. ( Y [,] X ) ) |
73 |
68 69 70 71 72
|
syl31anc |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> ( ( ( 1 - T ) x. Y ) + ( T x. X ) ) e. ( Y [,] X ) ) |
74 |
67 73
|
eqeltrd |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) e. ( Y [,] X ) ) |
75 |
62 74
|
sseldd |
|- ( ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) /\ Y < X ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) e. D ) |
76 |
26 28
|
lttri4d |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( X < Y \/ X = Y \/ Y < X ) ) |
77 |
37 53 75 76
|
mpjao3dan |
|- ( ( ph /\ ( X e. D /\ Y e. D /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. X ) + ( ( 1 - T ) x. Y ) ) e. D ) |