Metamath Proof Explorer


Theorem cxp1

Description: Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxp1
|- ( A e. CC -> ( A ^c 1 ) = A )

Proof

Step Hyp Ref Expression
1 1nn0
 |-  1 e. NN0
2 cxpexp
 |-  ( ( A e. CC /\ 1 e. NN0 ) -> ( A ^c 1 ) = ( A ^ 1 ) )
3 1 2 mpan2
 |-  ( A e. CC -> ( A ^c 1 ) = ( A ^ 1 ) )
4 exp1
 |-  ( A e. CC -> ( A ^ 1 ) = A )
5 3 4 eqtrd
 |-  ( A e. CC -> ( A ^c 1 ) = A )