| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> B e. CC ) | 
						
							| 2 |  | simp3 |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> C e. CC ) | 
						
							| 3 |  | logcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( log ` A ) e. CC ) | 
						
							| 5 | 1 2 4 | adddird |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( B + C ) x. ( log ` A ) ) = ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B + C ) x. ( log ` A ) ) ) = ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) ) | 
						
							| 7 | 1 4 | mulcld |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( B x. ( log ` A ) ) e. CC ) | 
						
							| 8 | 2 4 | mulcld |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( C x. ( log ` A ) ) e. CC ) | 
						
							| 9 |  | efadd |  |-  ( ( ( B x. ( log ` A ) ) e. CC /\ ( C x. ( log ` A ) ) e. CC ) -> ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) | 
						
							| 10 | 7 8 9 | syl2anc |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B x. ( log ` A ) ) + ( C x. ( log ` A ) ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) | 
						
							| 11 | 6 10 | eqtrd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( exp ` ( ( B + C ) x. ( log ` A ) ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) | 
						
							| 12 |  | simp1l |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> A e. CC ) | 
						
							| 13 |  | simp1r |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> A =/= 0 ) | 
						
							| 14 |  | addcl |  |-  ( ( B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) | 
						
							| 15 | 14 | 3adant1 |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) | 
						
							| 16 |  | cxpef |  |-  ( ( A e. CC /\ A =/= 0 /\ ( B + C ) e. CC ) -> ( A ^c ( B + C ) ) = ( exp ` ( ( B + C ) x. ( log ` A ) ) ) ) | 
						
							| 17 | 12 13 15 16 | syl3anc |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + C ) ) = ( exp ` ( ( B + C ) x. ( log ` A ) ) ) ) | 
						
							| 18 |  | cxpef |  |-  ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) | 
						
							| 19 | 12 13 1 18 | syl3anc |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) | 
						
							| 20 |  | cxpef |  |-  ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) | 
						
							| 21 | 12 13 2 20 | syl3anc |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) | 
						
							| 22 | 19 21 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( A ^c B ) x. ( A ^c C ) ) = ( ( exp ` ( B x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` A ) ) ) ) ) | 
						
							| 23 | 11 17 22 | 3eqtr4d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + C ) ) = ( ( A ^c B ) x. ( A ^c C ) ) ) |