Step |
Hyp |
Ref |
Expression |
1 |
|
cxpval |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) = if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) ) |
2 |
|
ax-1cn |
|- 1 e. CC |
3 |
|
0cn |
|- 0 e. CC |
4 |
2 3
|
ifcli |
|- if ( B = 0 , 1 , 0 ) e. CC |
5 |
4
|
a1i |
|- ( ( ( A e. CC /\ B e. CC ) /\ A = 0 ) -> if ( B = 0 , 1 , 0 ) e. CC ) |
6 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
7 |
|
id |
|- ( B e. CC -> B e. CC ) |
8 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
9 |
|
mulcl |
|- ( ( B e. CC /\ ( log ` A ) e. CC ) -> ( B x. ( log ` A ) ) e. CC ) |
10 |
7 8 9
|
syl2anr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) -> ( B x. ( log ` A ) ) e. CC ) |
11 |
10
|
an32s |
|- ( ( ( A e. CC /\ B e. CC ) /\ A =/= 0 ) -> ( B x. ( log ` A ) ) e. CC ) |
12 |
|
efcl |
|- ( ( B x. ( log ` A ) ) e. CC -> ( exp ` ( B x. ( log ` A ) ) ) e. CC ) |
13 |
11 12
|
syl |
|- ( ( ( A e. CC /\ B e. CC ) /\ A =/= 0 ) -> ( exp ` ( B x. ( log ` A ) ) ) e. CC ) |
14 |
6 13
|
sylan2br |
|- ( ( ( A e. CC /\ B e. CC ) /\ -. A = 0 ) -> ( exp ` ( B x. ( log ` A ) ) ) e. CC ) |
15 |
5 14
|
ifclda |
|- ( ( A e. CC /\ B e. CC ) -> if ( A = 0 , if ( B = 0 , 1 , 0 ) , ( exp ` ( B x. ( log ` A ) ) ) ) e. CC ) |
16 |
1 15
|
eqeltrd |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |