Metamath Proof Explorer


Theorem cxpcld

Description: Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1
|- ( ph -> A e. CC )
cxpcld.2
|- ( ph -> B e. CC )
Assertion cxpcld
|- ( ph -> ( A ^c B ) e. CC )

Proof

Step Hyp Ref Expression
1 cxp0d.1
 |-  ( ph -> A e. CC )
2 cxpcld.2
 |-  ( ph -> B e. CC )
3 cxpcl
 |-  ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC )
4 1 2 3 syl2anc
 |-  ( ph -> ( A ^c B ) e. CC )