Step |
Hyp |
Ref |
Expression |
1 |
|
cxpcn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
2 |
|
cxpcn.j |
|- J = ( TopOpen ` CCfld ) |
3 |
|
cxpcn.k |
|- K = ( J |`t D ) |
4 |
1
|
ellogdm |
|- ( x e. D <-> ( x e. CC /\ ( x e. RR -> x e. RR+ ) ) ) |
5 |
4
|
simplbi |
|- ( x e. D -> x e. CC ) |
6 |
5
|
adantr |
|- ( ( x e. D /\ y e. CC ) -> x e. CC ) |
7 |
1
|
logdmn0 |
|- ( x e. D -> x =/= 0 ) |
8 |
7
|
adantr |
|- ( ( x e. D /\ y e. CC ) -> x =/= 0 ) |
9 |
|
simpr |
|- ( ( x e. D /\ y e. CC ) -> y e. CC ) |
10 |
6 8 9
|
cxpefd |
|- ( ( x e. D /\ y e. CC ) -> ( x ^c y ) = ( exp ` ( y x. ( log ` x ) ) ) ) |
11 |
10
|
mpoeq3ia |
|- ( x e. D , y e. CC |-> ( x ^c y ) ) = ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) |
12 |
2
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
13 |
12
|
a1i |
|- ( T. -> J e. ( TopOn ` CC ) ) |
14 |
5
|
ssriv |
|- D C_ CC |
15 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ D C_ CC ) -> ( J |`t D ) e. ( TopOn ` D ) ) |
16 |
13 14 15
|
sylancl |
|- ( T. -> ( J |`t D ) e. ( TopOn ` D ) ) |
17 |
3 16
|
eqeltrid |
|- ( T. -> K e. ( TopOn ` D ) ) |
18 |
17 13
|
cnmpt2nd |
|- ( T. -> ( x e. D , y e. CC |-> y ) e. ( ( K tX J ) Cn J ) ) |
19 |
|
fvres |
|- ( x e. D -> ( ( log |` D ) ` x ) = ( log ` x ) ) |
20 |
19
|
adantr |
|- ( ( x e. D /\ y e. CC ) -> ( ( log |` D ) ` x ) = ( log ` x ) ) |
21 |
20
|
mpoeq3ia |
|- ( x e. D , y e. CC |-> ( ( log |` D ) ` x ) ) = ( x e. D , y e. CC |-> ( log ` x ) ) |
22 |
17 13
|
cnmpt1st |
|- ( T. -> ( x e. D , y e. CC |-> x ) e. ( ( K tX J ) Cn K ) ) |
23 |
1
|
logcn |
|- ( log |` D ) e. ( D -cn-> CC ) |
24 |
|
ssid |
|- CC C_ CC |
25 |
12
|
toponrestid |
|- J = ( J |`t CC ) |
26 |
2 3 25
|
cncfcn |
|- ( ( D C_ CC /\ CC C_ CC ) -> ( D -cn-> CC ) = ( K Cn J ) ) |
27 |
14 24 26
|
mp2an |
|- ( D -cn-> CC ) = ( K Cn J ) |
28 |
23 27
|
eleqtri |
|- ( log |` D ) e. ( K Cn J ) |
29 |
28
|
a1i |
|- ( T. -> ( log |` D ) e. ( K Cn J ) ) |
30 |
17 13 22 29
|
cnmpt21f |
|- ( T. -> ( x e. D , y e. CC |-> ( ( log |` D ) ` x ) ) e. ( ( K tX J ) Cn J ) ) |
31 |
21 30
|
eqeltrrid |
|- ( T. -> ( x e. D , y e. CC |-> ( log ` x ) ) e. ( ( K tX J ) Cn J ) ) |
32 |
2
|
mulcn |
|- x. e. ( ( J tX J ) Cn J ) |
33 |
32
|
a1i |
|- ( T. -> x. e. ( ( J tX J ) Cn J ) ) |
34 |
17 13 18 31 33
|
cnmpt22f |
|- ( T. -> ( x e. D , y e. CC |-> ( y x. ( log ` x ) ) ) e. ( ( K tX J ) Cn J ) ) |
35 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
36 |
2
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( J Cn J ) |
37 |
35 36
|
eleqtri |
|- exp e. ( J Cn J ) |
38 |
37
|
a1i |
|- ( T. -> exp e. ( J Cn J ) ) |
39 |
17 13 34 38
|
cnmpt21f |
|- ( T. -> ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) e. ( ( K tX J ) Cn J ) ) |
40 |
39
|
mptru |
|- ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) e. ( ( K tX J ) Cn J ) |
41 |
11 40
|
eqeltri |
|- ( x e. D , y e. CC |-> ( x ^c y ) ) e. ( ( K tX J ) Cn J ) |