| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxpcn2.j |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 2 |  | cxpcn2.k |  |-  K = ( J |`t RR+ ) | 
						
							| 3 | 1 | cnfldtopon |  |-  J e. ( TopOn ` CC ) | 
						
							| 4 |  | rpcn |  |-  ( x e. RR+ -> x e. CC ) | 
						
							| 5 |  | ax-1 |  |-  ( x e. RR+ -> ( x e. RR -> x e. RR+ ) ) | 
						
							| 6 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 7 | 6 | ellogdm |  |-  ( x e. ( CC \ ( -oo (,] 0 ) ) <-> ( x e. CC /\ ( x e. RR -> x e. RR+ ) ) ) | 
						
							| 8 | 4 5 7 | sylanbrc |  |-  ( x e. RR+ -> x e. ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 9 | 8 | ssriv |  |-  RR+ C_ ( CC \ ( -oo (,] 0 ) ) | 
						
							| 10 |  | cnex |  |-  CC e. _V | 
						
							| 11 | 10 | difexi |  |-  ( CC \ ( -oo (,] 0 ) ) e. _V | 
						
							| 12 |  | restabs |  |-  ( ( J e. ( TopOn ` CC ) /\ RR+ C_ ( CC \ ( -oo (,] 0 ) ) /\ ( CC \ ( -oo (,] 0 ) ) e. _V ) -> ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |`t RR+ ) = ( J |`t RR+ ) ) | 
						
							| 13 | 3 9 11 12 | mp3an |  |-  ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |`t RR+ ) = ( J |`t RR+ ) | 
						
							| 14 | 2 13 | eqtr4i |  |-  K = ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |`t RR+ ) | 
						
							| 15 | 3 | a1i |  |-  ( T. -> J e. ( TopOn ` CC ) ) | 
						
							| 16 |  | difss |  |-  ( CC \ ( -oo (,] 0 ) ) C_ CC | 
						
							| 17 |  | resttopon |  |-  ( ( J e. ( TopOn ` CC ) /\ ( CC \ ( -oo (,] 0 ) ) C_ CC ) -> ( J |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( T. -> ( J |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 19 | 9 | a1i |  |-  ( T. -> RR+ C_ ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 20 | 3 | toponrestid |  |-  J = ( J |`t CC ) | 
						
							| 21 |  | ssidd |  |-  ( T. -> CC C_ CC ) | 
						
							| 22 |  | eqid |  |-  ( J |`t ( CC \ ( -oo (,] 0 ) ) ) = ( J |`t ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 23 | 6 1 22 | cxpcn |  |-  ( x e. ( CC \ ( -oo (,] 0 ) ) , y e. CC |-> ( x ^c y ) ) e. ( ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) tX J ) Cn J ) | 
						
							| 24 | 23 | a1i |  |-  ( T. -> ( x e. ( CC \ ( -oo (,] 0 ) ) , y e. CC |-> ( x ^c y ) ) e. ( ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) tX J ) Cn J ) ) | 
						
							| 25 | 14 18 19 20 15 21 24 | cnmpt2res |  |-  ( T. -> ( x e. RR+ , y e. CC |-> ( x ^c y ) ) e. ( ( K tX J ) Cn J ) ) | 
						
							| 26 | 25 | mptru |  |-  ( x e. RR+ , y e. CC |-> ( x ^c y ) ) e. ( ( K tX J ) Cn J ) |