| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxpcnOLD.d |  |-  D = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 2 |  | cxpcnOLD.j |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 3 |  | cxpcnOLD.k |  |-  K = ( J |`t D ) | 
						
							| 4 | 1 | ellogdm |  |-  ( x e. D <-> ( x e. CC /\ ( x e. RR -> x e. RR+ ) ) ) | 
						
							| 5 | 4 | simplbi |  |-  ( x e. D -> x e. CC ) | 
						
							| 6 | 5 | adantr |  |-  ( ( x e. D /\ y e. CC ) -> x e. CC ) | 
						
							| 7 | 1 | logdmn0 |  |-  ( x e. D -> x =/= 0 ) | 
						
							| 8 | 7 | adantr |  |-  ( ( x e. D /\ y e. CC ) -> x =/= 0 ) | 
						
							| 9 |  | simpr |  |-  ( ( x e. D /\ y e. CC ) -> y e. CC ) | 
						
							| 10 | 6 8 9 | cxpefd |  |-  ( ( x e. D /\ y e. CC ) -> ( x ^c y ) = ( exp ` ( y x. ( log ` x ) ) ) ) | 
						
							| 11 | 10 | mpoeq3ia |  |-  ( x e. D , y e. CC |-> ( x ^c y ) ) = ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) | 
						
							| 12 | 2 | cnfldtopon |  |-  J e. ( TopOn ` CC ) | 
						
							| 13 | 12 | a1i |  |-  ( T. -> J e. ( TopOn ` CC ) ) | 
						
							| 14 | 5 | ssriv |  |-  D C_ CC | 
						
							| 15 |  | resttopon |  |-  ( ( J e. ( TopOn ` CC ) /\ D C_ CC ) -> ( J |`t D ) e. ( TopOn ` D ) ) | 
						
							| 16 | 13 14 15 | sylancl |  |-  ( T. -> ( J |`t D ) e. ( TopOn ` D ) ) | 
						
							| 17 | 3 16 | eqeltrid |  |-  ( T. -> K e. ( TopOn ` D ) ) | 
						
							| 18 | 17 13 | cnmpt2nd |  |-  ( T. -> ( x e. D , y e. CC |-> y ) e. ( ( K tX J ) Cn J ) ) | 
						
							| 19 |  | fvres |  |-  ( x e. D -> ( ( log |` D ) ` x ) = ( log ` x ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( x e. D /\ y e. CC ) -> ( ( log |` D ) ` x ) = ( log ` x ) ) | 
						
							| 21 | 20 | mpoeq3ia |  |-  ( x e. D , y e. CC |-> ( ( log |` D ) ` x ) ) = ( x e. D , y e. CC |-> ( log ` x ) ) | 
						
							| 22 | 17 13 | cnmpt1st |  |-  ( T. -> ( x e. D , y e. CC |-> x ) e. ( ( K tX J ) Cn K ) ) | 
						
							| 23 | 1 | logcn |  |-  ( log |` D ) e. ( D -cn-> CC ) | 
						
							| 24 |  | ssid |  |-  CC C_ CC | 
						
							| 25 | 12 | toponrestid |  |-  J = ( J |`t CC ) | 
						
							| 26 | 2 3 25 | cncfcn |  |-  ( ( D C_ CC /\ CC C_ CC ) -> ( D -cn-> CC ) = ( K Cn J ) ) | 
						
							| 27 | 14 24 26 | mp2an |  |-  ( D -cn-> CC ) = ( K Cn J ) | 
						
							| 28 | 23 27 | eleqtri |  |-  ( log |` D ) e. ( K Cn J ) | 
						
							| 29 | 28 | a1i |  |-  ( T. -> ( log |` D ) e. ( K Cn J ) ) | 
						
							| 30 | 17 13 22 29 | cnmpt21f |  |-  ( T. -> ( x e. D , y e. CC |-> ( ( log |` D ) ` x ) ) e. ( ( K tX J ) Cn J ) ) | 
						
							| 31 | 21 30 | eqeltrrid |  |-  ( T. -> ( x e. D , y e. CC |-> ( log ` x ) ) e. ( ( K tX J ) Cn J ) ) | 
						
							| 32 | 2 | mulcn |  |-  x. e. ( ( J tX J ) Cn J ) | 
						
							| 33 | 32 | a1i |  |-  ( T. -> x. e. ( ( J tX J ) Cn J ) ) | 
						
							| 34 | 17 13 18 31 33 | cnmpt22f |  |-  ( T. -> ( x e. D , y e. CC |-> ( y x. ( log ` x ) ) ) e. ( ( K tX J ) Cn J ) ) | 
						
							| 35 |  | efcn |  |-  exp e. ( CC -cn-> CC ) | 
						
							| 36 | 2 | cncfcn1 |  |-  ( CC -cn-> CC ) = ( J Cn J ) | 
						
							| 37 | 35 36 | eleqtri |  |-  exp e. ( J Cn J ) | 
						
							| 38 | 37 | a1i |  |-  ( T. -> exp e. ( J Cn J ) ) | 
						
							| 39 | 17 13 34 38 | cnmpt21f |  |-  ( T. -> ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) e. ( ( K tX J ) Cn J ) ) | 
						
							| 40 | 39 | mptru |  |-  ( x e. D , y e. CC |-> ( exp ` ( y x. ( log ` x ) ) ) ) e. ( ( K tX J ) Cn J ) | 
						
							| 41 | 11 40 | eqeltri |  |-  ( x e. D , y e. CC |-> ( x ^c y ) ) e. ( ( K tX J ) Cn J ) |