| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpcncf1.a |
|- ( ph -> A e. CC ) |
| 2 |
|
cxpcncf1.d |
|- ( ph -> D C_ ( CC \ ( -oo (,] 0 ) ) ) |
| 3 |
|
resmpt |
|- ( D C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) = ( x e. D |-> ( x ^c A ) ) ) |
| 4 |
2 3
|
syl |
|- ( ph -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) = ( x e. D |-> ( x ^c A ) ) ) |
| 5 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 6 |
5
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 7 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
| 8 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ ( -oo (,] 0 ) ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) |
| 9 |
6 7 8
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) |
| 10 |
9
|
a1i |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) |
| 11 |
10
|
cnmptid |
|- ( ph -> ( x e. ( CC \ ( -oo (,] 0 ) ) |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) |
| 12 |
6
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 13 |
10 12 1
|
cnmptc |
|- ( ph -> ( x e. ( CC \ ( -oo (,] 0 ) ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
| 15 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) |
| 16 |
14 5 15
|
cxpcn |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 17 |
16
|
a1i |
|- ( ph -> ( y e. ( CC \ ( -oo (,] 0 ) ) , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 18 |
|
oveq12 |
|- ( ( y = x /\ z = A ) -> ( y ^c z ) = ( x ^c A ) ) |
| 19 |
10 11 13 10 12 17 18
|
cnmpt12 |
|- ( ph -> ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 20 |
|
ssid |
|- CC C_ CC |
| 21 |
6
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 22 |
5 15 21
|
cncfcn |
|- ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ CC C_ CC ) -> ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 23 |
7 20 22
|
mp2an |
|- ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) |
| 24 |
23
|
eqcomi |
|- ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) = ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) |
| 25 |
24
|
a1i |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) Cn ( TopOpen ` CCfld ) ) = ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) |
| 26 |
19 25
|
eleqtrd |
|- ( ph -> ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) |
| 27 |
|
rescncf |
|- ( D C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) e. ( D -cn-> CC ) ) ) |
| 28 |
27
|
imp |
|- ( ( D C_ ( CC \ ( -oo (,] 0 ) ) /\ ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) e. ( D -cn-> CC ) ) |
| 29 |
2 26 28
|
syl2anc |
|- ( ph -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c A ) ) |` D ) e. ( D -cn-> CC ) ) |
| 30 |
4 29
|
eqeltrrd |
|- ( ph -> ( x e. D |-> ( x ^c A ) ) e. ( D -cn-> CC ) ) |