| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 2 | 1 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 3 | 2 | a1i |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 4 |  | difss |  |-  ( CC \ ( -oo (,] 0 ) ) C_ CC | 
						
							| 5 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ ( -oo (,] 0 ) ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 6 | 2 4 5 | mp2an |  |-  ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 7 | 6 | a1i |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) | 
						
							| 8 |  | id |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 9 |  | snidg |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. { A } ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ x e. CC ) -> A e. { A } ) | 
						
							| 11 | 10 | fmpttd |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> A ) : CC --> { A } ) | 
						
							| 12 |  | cnconst |  |-  ( ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) /\ ( A e. ( CC \ ( -oo (,] 0 ) ) /\ ( x e. CC |-> A ) : CC --> { A } ) ) -> ( x e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) | 
						
							| 13 | 3 7 8 11 12 | syl22anc |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) | 
						
							| 14 | 3 | cnmptid |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 15 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 16 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 17 | 15 1 16 | cxpcn |  |-  ( y e. ( CC \ ( -oo (,] 0 ) ) , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 18 | 17 | a1i |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( y e. ( CC \ ( -oo (,] 0 ) ) , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 19 |  | oveq12 |  |-  ( ( y = A /\ z = x ) -> ( y ^c z ) = ( A ^c x ) ) | 
						
							| 20 | 3 13 14 7 3 18 19 | cnmpt12 |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> ( A ^c x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 21 |  | ssid |  |-  CC C_ CC | 
						
							| 22 | 2 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 23 | 1 22 22 | cncfcn |  |-  ( ( CC C_ CC /\ CC C_ CC ) -> ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 24 | 21 21 23 | mp2an |  |-  ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 25 | 24 | eqcomi |  |-  ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) = ( CC -cn-> CC ) | 
						
							| 26 | 25 | a1i |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) = ( CC -cn-> CC ) ) | 
						
							| 27 | 20 26 | eleqtrd |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> ( A ^c x ) ) e. ( CC -cn-> CC ) ) |