Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cxp0d.1 | |- ( ph -> A e. CC ) |
|
cxpefd.2 | |- ( ph -> A =/= 0 ) |
||
cxpefd.3 | |- ( ph -> B e. CC ) |
||
Assertion | cxpefd | |- ( ph -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxp0d.1 | |- ( ph -> A e. CC ) |
|
2 | cxpefd.2 | |- ( ph -> A =/= 0 ) |
|
3 | cxpefd.3 | |- ( ph -> B e. CC ) |
|
4 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |