| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpne0 |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
| 2 |
1
|
3com23 |
|- ( ( A e. CC /\ B e. CC /\ A =/= 0 ) -> ( A ^c B ) =/= 0 ) |
| 3 |
2
|
3expia |
|- ( ( A e. CC /\ B e. CC ) -> ( A =/= 0 -> ( A ^c B ) =/= 0 ) ) |
| 4 |
3
|
necon4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 -> A = 0 ) ) |
| 5 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 6 |
|
cxp0 |
|- ( A e. CC -> ( A ^c 0 ) = 1 ) |
| 7 |
6
|
neeq1d |
|- ( A e. CC -> ( ( A ^c 0 ) =/= 0 <-> 1 =/= 0 ) ) |
| 8 |
5 7
|
mpbiri |
|- ( A e. CC -> ( A ^c 0 ) =/= 0 ) |
| 9 |
8
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c 0 ) =/= 0 ) |
| 10 |
|
oveq2 |
|- ( B = 0 -> ( A ^c B ) = ( A ^c 0 ) ) |
| 11 |
10
|
neeq1d |
|- ( B = 0 -> ( ( A ^c B ) =/= 0 <-> ( A ^c 0 ) =/= 0 ) ) |
| 12 |
9 11
|
syl5ibrcom |
|- ( ( A e. CC /\ B e. CC ) -> ( B = 0 -> ( A ^c B ) =/= 0 ) ) |
| 13 |
12
|
necon2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 -> B =/= 0 ) ) |
| 14 |
4 13
|
jcad |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 -> ( A = 0 /\ B =/= 0 ) ) ) |
| 15 |
|
0cxp |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
| 16 |
|
oveq1 |
|- ( A = 0 -> ( A ^c B ) = ( 0 ^c B ) ) |
| 17 |
16
|
eqeq1d |
|- ( A = 0 -> ( ( A ^c B ) = 0 <-> ( 0 ^c B ) = 0 ) ) |
| 18 |
15 17
|
syl5ibrcom |
|- ( ( B e. CC /\ B =/= 0 ) -> ( A = 0 -> ( A ^c B ) = 0 ) ) |
| 19 |
18
|
expimpd |
|- ( B e. CC -> ( ( B =/= 0 /\ A = 0 ) -> ( A ^c B ) = 0 ) ) |
| 20 |
19
|
ancomsd |
|- ( B e. CC -> ( ( A = 0 /\ B =/= 0 ) -> ( A ^c B ) = 0 ) ) |
| 21 |
20
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A = 0 /\ B =/= 0 ) -> ( A ^c B ) = 0 ) ) |
| 22 |
14 21
|
impbid |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) = 0 <-> ( A = 0 /\ B =/= 0 ) ) ) |