Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
2 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
3 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
4 |
|
0cxp |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
5 |
2 3 4
|
syl2anc |
|- ( B e. NN -> ( 0 ^c B ) = 0 ) |
6 |
|
0exp |
|- ( B e. NN -> ( 0 ^ B ) = 0 ) |
7 |
5 6
|
eqtr4d |
|- ( B e. NN -> ( 0 ^c B ) = ( 0 ^ B ) ) |
8 |
|
0cn |
|- 0 e. CC |
9 |
|
cxpval |
|- ( ( 0 e. CC /\ 0 e. CC ) -> ( 0 ^c 0 ) = if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ` ( 0 x. ( log ` 0 ) ) ) ) ) |
10 |
8 8 9
|
mp2an |
|- ( 0 ^c 0 ) = if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ` ( 0 x. ( log ` 0 ) ) ) ) |
11 |
|
eqid |
|- 0 = 0 |
12 |
11
|
iftruei |
|- if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ` ( 0 x. ( log ` 0 ) ) ) ) = if ( 0 = 0 , 1 , 0 ) |
13 |
11
|
iftruei |
|- if ( 0 = 0 , 1 , 0 ) = 1 |
14 |
10 12 13
|
3eqtri |
|- ( 0 ^c 0 ) = 1 |
15 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
16 |
14 15
|
eqtr4i |
|- ( 0 ^c 0 ) = ( 0 ^ 0 ) |
17 |
|
oveq2 |
|- ( B = 0 -> ( 0 ^c B ) = ( 0 ^c 0 ) ) |
18 |
|
oveq2 |
|- ( B = 0 -> ( 0 ^ B ) = ( 0 ^ 0 ) ) |
19 |
16 17 18
|
3eqtr4a |
|- ( B = 0 -> ( 0 ^c B ) = ( 0 ^ B ) ) |
20 |
7 19
|
jaoi |
|- ( ( B e. NN \/ B = 0 ) -> ( 0 ^c B ) = ( 0 ^ B ) ) |
21 |
1 20
|
sylbi |
|- ( B e. NN0 -> ( 0 ^c B ) = ( 0 ^ B ) ) |
22 |
|
oveq1 |
|- ( A = 0 -> ( A ^c B ) = ( 0 ^c B ) ) |
23 |
|
oveq1 |
|- ( A = 0 -> ( A ^ B ) = ( 0 ^ B ) ) |
24 |
22 23
|
eqeq12d |
|- ( A = 0 -> ( ( A ^c B ) = ( A ^ B ) <-> ( 0 ^c B ) = ( 0 ^ B ) ) ) |
25 |
21 24
|
syl5ibrcom |
|- ( B e. NN0 -> ( A = 0 -> ( A ^c B ) = ( A ^ B ) ) ) |
26 |
25
|
adantl |
|- ( ( A e. CC /\ B e. NN0 ) -> ( A = 0 -> ( A ^c B ) = ( A ^ B ) ) ) |
27 |
26
|
imp |
|- ( ( ( A e. CC /\ B e. NN0 ) /\ A = 0 ) -> ( A ^c B ) = ( A ^ B ) ) |
28 |
|
nn0z |
|- ( B e. NN0 -> B e. ZZ ) |
29 |
|
cxpexpz |
|- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) ) |
30 |
29
|
3expa |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) ) |
31 |
28 30
|
sylan2 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. NN0 ) -> ( A ^c B ) = ( A ^ B ) ) |
32 |
31
|
an32s |
|- ( ( ( A e. CC /\ B e. NN0 ) /\ A =/= 0 ) -> ( A ^c B ) = ( A ^ B ) ) |
33 |
27 32
|
pm2.61dane |
|- ( ( A e. CC /\ B e. NN0 ) -> ( A ^c B ) = ( A ^ B ) ) |