Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cxpexpz | |- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
2 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
3 | 1 2 | syl3an3 | |- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
4 | explog | |- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^ B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
5 | 3 4 | eqtr4d | |- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) ) |