Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
leloe |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
3 |
1 2
|
mpan |
|- ( A e. RR -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
4 |
3
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
5 |
|
elrp |
|- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
6 |
|
rpcxpcl |
|- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) |
7 |
6
|
rpge0d |
|- ( ( A e. RR+ /\ B e. RR ) -> 0 <_ ( A ^c B ) ) |
8 |
7
|
ex |
|- ( A e. RR+ -> ( B e. RR -> 0 <_ ( A ^c B ) ) ) |
9 |
5 8
|
sylbir |
|- ( ( A e. RR /\ 0 < A ) -> ( B e. RR -> 0 <_ ( A ^c B ) ) ) |
10 |
9
|
impancom |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 < A -> 0 <_ ( A ^c B ) ) ) |
11 |
|
0le1 |
|- 0 <_ 1 |
12 |
|
0cn |
|- 0 e. CC |
13 |
|
cxp0 |
|- ( 0 e. CC -> ( 0 ^c 0 ) = 1 ) |
14 |
12 13
|
ax-mp |
|- ( 0 ^c 0 ) = 1 |
15 |
11 14
|
breqtrri |
|- 0 <_ ( 0 ^c 0 ) |
16 |
|
simpr |
|- ( ( B e. RR /\ B = 0 ) -> B = 0 ) |
17 |
16
|
oveq2d |
|- ( ( B e. RR /\ B = 0 ) -> ( 0 ^c B ) = ( 0 ^c 0 ) ) |
18 |
15 17
|
breqtrrid |
|- ( ( B e. RR /\ B = 0 ) -> 0 <_ ( 0 ^c B ) ) |
19 |
|
0le0 |
|- 0 <_ 0 |
20 |
|
recn |
|- ( B e. RR -> B e. CC ) |
21 |
|
0cxp |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
22 |
20 21
|
sylan |
|- ( ( B e. RR /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
23 |
19 22
|
breqtrrid |
|- ( ( B e. RR /\ B =/= 0 ) -> 0 <_ ( 0 ^c B ) ) |
24 |
18 23
|
pm2.61dane |
|- ( B e. RR -> 0 <_ ( 0 ^c B ) ) |
25 |
24
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> 0 <_ ( 0 ^c B ) ) |
26 |
|
oveq1 |
|- ( 0 = A -> ( 0 ^c B ) = ( A ^c B ) ) |
27 |
26
|
breq2d |
|- ( 0 = A -> ( 0 <_ ( 0 ^c B ) <-> 0 <_ ( A ^c B ) ) ) |
28 |
25 27
|
syl5ibcom |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 = A -> 0 <_ ( A ^c B ) ) ) |
29 |
10 28
|
jaod |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A \/ 0 = A ) -> 0 <_ ( A ^c B ) ) ) |
30 |
4 29
|
sylbid |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ A -> 0 <_ ( A ^c B ) ) ) |
31 |
30
|
3impia |
|- ( ( A e. RR /\ B e. RR /\ 0 <_ A ) -> 0 <_ ( A ^c B ) ) |
32 |
31
|
3com23 |
|- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> 0 <_ ( A ^c B ) ) |