| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxplt |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( C e. RR /\ B e. RR ) ) -> ( C < B <-> ( A ^c C ) < ( A ^c B ) ) ) | 
						
							| 2 | 1 | ancom2s |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( C < B <-> ( A ^c C ) < ( A ^c B ) ) ) | 
						
							| 3 | 2 | notbid |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( -. C < B <-> -. ( A ^c C ) < ( A ^c B ) ) ) | 
						
							| 4 |  | lenlt |  |-  ( ( B e. RR /\ C e. RR ) -> ( B <_ C <-> -. C < B ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> -. C < B ) ) | 
						
							| 6 |  | simpll |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> A e. RR ) | 
						
							| 7 |  | 0red |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 e. RR ) | 
						
							| 8 |  | 1red |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 1 e. RR ) | 
						
							| 9 |  | 0lt1 |  |-  0 < 1 | 
						
							| 10 | 9 | a1i |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 < 1 ) | 
						
							| 11 |  | simplr |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 1 < A ) | 
						
							| 12 | 7 8 6 10 11 | lttrd |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 < A ) | 
						
							| 13 | 7 6 12 | ltled |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 <_ A ) | 
						
							| 14 |  | simprl |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> B e. RR ) | 
						
							| 15 |  | recxpcl |  |-  ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( A ^c B ) e. RR ) | 
						
							| 16 | 6 13 14 15 | syl3anc |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c B ) e. RR ) | 
						
							| 17 |  | simprr |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> C e. RR ) | 
						
							| 18 |  | recxpcl |  |-  ( ( A e. RR /\ 0 <_ A /\ C e. RR ) -> ( A ^c C ) e. RR ) | 
						
							| 19 | 6 13 17 18 | syl3anc |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c C ) e. RR ) | 
						
							| 20 | 16 19 | lenltd |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( A ^c B ) <_ ( A ^c C ) <-> -. ( A ^c C ) < ( A ^c B ) ) ) | 
						
							| 21 | 3 5 20 | 3bitr4d |  |-  ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> ( A ^c B ) <_ ( A ^c C ) ) ) |