Metamath Proof Explorer


Theorem cxple2ad

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1
|- ( ph -> A e. RR )
recxpcld.2
|- ( ph -> 0 <_ A )
recxpcld.3
|- ( ph -> B e. RR )
cxple2ad.4
|- ( ph -> C e. RR )
cxple2ad.5
|- ( ph -> 0 <_ C )
cxple2ad.6
|- ( ph -> A <_ B )
Assertion cxple2ad
|- ( ph -> ( A ^c C ) <_ ( B ^c C ) )

Proof

Step Hyp Ref Expression
1 recxpcld.1
 |-  ( ph -> A e. RR )
2 recxpcld.2
 |-  ( ph -> 0 <_ A )
3 recxpcld.3
 |-  ( ph -> B e. RR )
4 cxple2ad.4
 |-  ( ph -> C e. RR )
5 cxple2ad.5
 |-  ( ph -> 0 <_ C )
6 cxple2ad.6
 |-  ( ph -> A <_ B )
7 cxple2a
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( 0 <_ A /\ 0 <_ C ) /\ A <_ B ) -> ( A ^c C ) <_ ( B ^c C ) )
8 1 3 4 2 5 6 7 syl321anc
 |-  ( ph -> ( A ^c C ) <_ ( B ^c C ) )