| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxplt3 |  |-  ( ( ( A e. RR+ /\ A < 1 ) /\ ( C e. RR /\ B e. RR ) ) -> ( C < B <-> ( A ^c B ) < ( A ^c C ) ) ) | 
						
							| 2 | 1 | ancom2s |  |-  ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( C < B <-> ( A ^c B ) < ( A ^c C ) ) ) | 
						
							| 3 | 2 | notbid |  |-  ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( -. C < B <-> -. ( A ^c B ) < ( A ^c C ) ) ) | 
						
							| 4 |  | lenlt |  |-  ( ( B e. RR /\ C e. RR ) -> ( B <_ C <-> -. C < B ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> -. C < B ) ) | 
						
							| 6 |  | rpcxpcl |  |-  ( ( A e. RR+ /\ C e. RR ) -> ( A ^c C ) e. RR+ ) | 
						
							| 7 | 6 | ad2ant2rl |  |-  ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c C ) e. RR+ ) | 
						
							| 8 |  | rpcxpcl |  |-  ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) | 
						
							| 9 | 8 | ad2ant2r |  |-  ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c B ) e. RR+ ) | 
						
							| 10 |  | rpre |  |-  ( ( A ^c C ) e. RR+ -> ( A ^c C ) e. RR ) | 
						
							| 11 |  | rpre |  |-  ( ( A ^c B ) e. RR+ -> ( A ^c B ) e. RR ) | 
						
							| 12 |  | lenlt |  |-  ( ( ( A ^c C ) e. RR /\ ( A ^c B ) e. RR ) -> ( ( A ^c C ) <_ ( A ^c B ) <-> -. ( A ^c B ) < ( A ^c C ) ) ) | 
						
							| 13 | 10 11 12 | syl2an |  |-  ( ( ( A ^c C ) e. RR+ /\ ( A ^c B ) e. RR+ ) -> ( ( A ^c C ) <_ ( A ^c B ) <-> -. ( A ^c B ) < ( A ^c C ) ) ) | 
						
							| 14 | 7 9 13 | syl2anc |  |-  ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( A ^c C ) <_ ( A ^c B ) <-> -. ( A ^c B ) < ( A ^c C ) ) ) | 
						
							| 15 | 3 5 14 | 3bitr4d |  |-  ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> ( A ^c C ) <_ ( A ^c B ) ) ) |