Metamath Proof Explorer


Theorem cxplead

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1
|- ( ph -> A e. RR )
cxplead.2
|- ( ph -> 1 <_ A )
cxplead.3
|- ( ph -> B e. RR )
cxplead.4
|- ( ph -> C e. RR )
cxplead.5
|- ( ph -> B <_ C )
Assertion cxplead
|- ( ph -> ( A ^c B ) <_ ( A ^c C ) )

Proof

Step Hyp Ref Expression
1 recxpcld.1
 |-  ( ph -> A e. RR )
2 cxplead.2
 |-  ( ph -> 1 <_ A )
3 cxplead.3
 |-  ( ph -> B e. RR )
4 cxplead.4
 |-  ( ph -> C e. RR )
5 cxplead.5
 |-  ( ph -> B <_ C )
6 cxplea
 |-  ( ( ( A e. RR /\ 1 <_ A ) /\ ( B e. RR /\ C e. RR ) /\ B <_ C ) -> ( A ^c B ) <_ ( A ^c C ) )
7 1 2 3 4 5 6 syl221anc
 |-  ( ph -> ( A ^c B ) <_ ( A ^c C ) )