Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recxpcld.1 | |- ( ph -> A e. RR ) |
|
cxplead.2 | |- ( ph -> 1 <_ A ) |
||
cxplead.3 | |- ( ph -> B e. RR ) |
||
cxplead.4 | |- ( ph -> C e. RR ) |
||
cxplead.5 | |- ( ph -> B <_ C ) |
||
Assertion | cxplead | |- ( ph -> ( A ^c B ) <_ ( A ^c C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recxpcld.1 | |- ( ph -> A e. RR ) |
|
2 | cxplead.2 | |- ( ph -> 1 <_ A ) |
|
3 | cxplead.3 | |- ( ph -> B e. RR ) |
|
4 | cxplead.4 | |- ( ph -> C e. RR ) |
|
5 | cxplead.5 | |- ( ph -> B <_ C ) |
|
6 | cxplea | |- ( ( ( A e. RR /\ 1 <_ A ) /\ ( B e. RR /\ C e. RR ) /\ B <_ C ) -> ( A ^c B ) <_ ( A ^c C ) ) |
|
7 | 1 2 3 4 5 6 | syl221anc | |- ( ph -> ( A ^c B ) <_ ( A ^c C ) ) |