| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> A e. RR+ ) |
| 2 |
|
simprl |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> B e. RR ) |
| 3 |
2
|
recnd |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> B e. CC ) |
| 4 |
|
cxprec |
|- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |
| 5 |
1 3 4
|
syl2anc |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |
| 6 |
|
simprr |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> C e. RR ) |
| 7 |
6
|
recnd |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> C e. CC ) |
| 8 |
|
cxprec |
|- ( ( A e. RR+ /\ C e. CC ) -> ( ( 1 / A ) ^c C ) = ( 1 / ( A ^c C ) ) ) |
| 9 |
1 7 8
|
syl2anc |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( 1 / A ) ^c C ) = ( 1 / ( A ^c C ) ) ) |
| 10 |
5 9
|
breq12d |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( ( 1 / A ) ^c B ) < ( ( 1 / A ) ^c C ) <-> ( 1 / ( A ^c B ) ) < ( 1 / ( A ^c C ) ) ) ) |
| 11 |
1
|
rprecred |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( 1 / A ) e. RR ) |
| 12 |
|
simplr |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> A < 1 ) |
| 13 |
1
|
reclt1d |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A < 1 <-> 1 < ( 1 / A ) ) ) |
| 14 |
12 13
|
mpbid |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> 1 < ( 1 / A ) ) |
| 15 |
|
cxplt |
|- ( ( ( ( 1 / A ) e. RR /\ 1 < ( 1 / A ) ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( ( 1 / A ) ^c B ) < ( ( 1 / A ) ^c C ) ) ) |
| 16 |
11 14 2 6 15
|
syl22anc |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( ( 1 / A ) ^c B ) < ( ( 1 / A ) ^c C ) ) ) |
| 17 |
|
rpcxpcl |
|- ( ( A e. RR+ /\ C e. RR ) -> ( A ^c C ) e. RR+ ) |
| 18 |
17
|
ad2ant2rl |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c C ) e. RR+ ) |
| 19 |
|
rpcxpcl |
|- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) |
| 20 |
19
|
ad2ant2r |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c B ) e. RR+ ) |
| 21 |
18 20
|
ltrecd |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( A ^c C ) < ( A ^c B ) <-> ( 1 / ( A ^c B ) ) < ( 1 / ( A ^c C ) ) ) ) |
| 22 |
10 16 21
|
3bitr4d |
|- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( A ^c C ) < ( A ^c B ) ) ) |