Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recxpcld.1 | |- ( ph -> A e. RR ) | |
| cxpltd.2 | |- ( ph -> 1 < A ) | ||
| cxpltd.3 | |- ( ph -> B e. RR ) | ||
| cxpltd.4 | |- ( ph -> C e. RR ) | ||
| Assertion | cxpltd | |- ( ph -> ( B < C <-> ( A ^c B ) < ( A ^c C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recxpcld.1 | |- ( ph -> A e. RR ) | |
| 2 | cxpltd.2 | |- ( ph -> 1 < A ) | |
| 3 | cxpltd.3 | |- ( ph -> B e. RR ) | |
| 4 | cxpltd.4 | |- ( ph -> C e. RR ) | |
| 5 | cxplt | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( A ^c B ) < ( A ^c C ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( B < C <-> ( A ^c B ) < ( A ^c C ) ) ) |