| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> C e. CC ) |
| 2 |
|
simp2 |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> B e. RR ) |
| 3 |
2
|
recnd |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> B e. CC ) |
| 4 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` A ) e. RR ) |
| 6 |
5
|
recnd |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` A ) e. CC ) |
| 7 |
1 3 6
|
mulassd |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( ( C x. B ) x. ( log ` A ) ) = ( C x. ( B x. ( log ` A ) ) ) ) |
| 8 |
3 1
|
mulcomd |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 9 |
8
|
oveq1d |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( ( B x. C ) x. ( log ` A ) ) = ( ( C x. B ) x. ( log ` A ) ) ) |
| 10 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> A e. CC ) |
| 12 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> A =/= 0 ) |
| 14 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 15 |
11 13 3 14
|
syl3anc |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 16 |
15
|
fveq2d |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` ( A ^c B ) ) = ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 17 |
2 5
|
remulcld |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( B x. ( log ` A ) ) e. RR ) |
| 18 |
17
|
relogefd |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( B x. ( log ` A ) ) ) |
| 19 |
16 18
|
eqtrd |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |
| 20 |
19
|
oveq2d |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( C x. ( log ` ( A ^c B ) ) ) = ( C x. ( B x. ( log ` A ) ) ) ) |
| 21 |
7 9 20
|
3eqtr4d |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( ( B x. C ) x. ( log ` A ) ) = ( C x. ( log ` ( A ^c B ) ) ) ) |
| 22 |
21
|
fveq2d |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( exp ` ( ( B x. C ) x. ( log ` A ) ) ) = ( exp ` ( C x. ( log ` ( A ^c B ) ) ) ) ) |
| 23 |
3 1
|
mulcld |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( B x. C ) e. CC ) |
| 24 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ ( B x. C ) e. CC ) -> ( A ^c ( B x. C ) ) = ( exp ` ( ( B x. C ) x. ( log ` A ) ) ) ) |
| 25 |
11 13 23 24
|
syl3anc |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c ( B x. C ) ) = ( exp ` ( ( B x. C ) x. ( log ` A ) ) ) ) |
| 26 |
|
cxpcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
| 27 |
11 3 26
|
syl2anc |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c B ) e. CC ) |
| 28 |
|
cxpne0 |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
| 29 |
11 13 3 28
|
syl3anc |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c B ) =/= 0 ) |
| 30 |
|
cxpef |
|- ( ( ( A ^c B ) e. CC /\ ( A ^c B ) =/= 0 /\ C e. CC ) -> ( ( A ^c B ) ^c C ) = ( exp ` ( C x. ( log ` ( A ^c B ) ) ) ) ) |
| 31 |
27 29 1 30
|
syl3anc |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( ( A ^c B ) ^c C ) = ( exp ` ( C x. ( log ` ( A ^c B ) ) ) ) ) |
| 32 |
22 25 31
|
3eqtr4d |
|- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^c C ) ) |