Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = 0 -> ( B x. x ) = ( B x. 0 ) ) |
2 |
1
|
oveq2d |
|- ( x = 0 -> ( A ^c ( B x. x ) ) = ( A ^c ( B x. 0 ) ) ) |
3 |
|
oveq2 |
|- ( x = 0 -> ( ( A ^c B ) ^ x ) = ( ( A ^c B ) ^ 0 ) ) |
4 |
2 3
|
eqeq12d |
|- ( x = 0 -> ( ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) <-> ( A ^c ( B x. 0 ) ) = ( ( A ^c B ) ^ 0 ) ) ) |
5 |
4
|
imbi2d |
|- ( x = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. 0 ) ) = ( ( A ^c B ) ^ 0 ) ) ) ) |
6 |
|
oveq2 |
|- ( x = k -> ( B x. x ) = ( B x. k ) ) |
7 |
6
|
oveq2d |
|- ( x = k -> ( A ^c ( B x. x ) ) = ( A ^c ( B x. k ) ) ) |
8 |
|
oveq2 |
|- ( x = k -> ( ( A ^c B ) ^ x ) = ( ( A ^c B ) ^ k ) ) |
9 |
7 8
|
eqeq12d |
|- ( x = k -> ( ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) <-> ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) ) ) |
10 |
9
|
imbi2d |
|- ( x = k -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) ) ) ) |
11 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( B x. x ) = ( B x. ( k + 1 ) ) ) |
12 |
11
|
oveq2d |
|- ( x = ( k + 1 ) -> ( A ^c ( B x. x ) ) = ( A ^c ( B x. ( k + 1 ) ) ) ) |
13 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( ( A ^c B ) ^ x ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) |
14 |
12 13
|
eqeq12d |
|- ( x = ( k + 1 ) -> ( ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) <-> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) |
15 |
14
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) ) |
16 |
|
oveq2 |
|- ( x = C -> ( B x. x ) = ( B x. C ) ) |
17 |
16
|
oveq2d |
|- ( x = C -> ( A ^c ( B x. x ) ) = ( A ^c ( B x. C ) ) ) |
18 |
|
oveq2 |
|- ( x = C -> ( ( A ^c B ) ^ x ) = ( ( A ^c B ) ^ C ) ) |
19 |
17 18
|
eqeq12d |
|- ( x = C -> ( ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) <-> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
20 |
19
|
imbi2d |
|- ( x = C -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) ) |
21 |
|
cxp0 |
|- ( A e. CC -> ( A ^c 0 ) = 1 ) |
22 |
21
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c 0 ) = 1 ) |
23 |
|
mul01 |
|- ( B e. CC -> ( B x. 0 ) = 0 ) |
24 |
23
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( B x. 0 ) = 0 ) |
25 |
24
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. 0 ) ) = ( A ^c 0 ) ) |
26 |
|
cxpcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
27 |
26
|
exp0d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) ^ 0 ) = 1 ) |
28 |
22 25 27
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. 0 ) ) = ( ( A ^c B ) ^ 0 ) ) |
29 |
|
oveq1 |
|- ( ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) -> ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) = ( ( ( A ^c B ) ^ k ) x. ( A ^c B ) ) ) |
30 |
|
0cn |
|- 0 e. CC |
31 |
|
cxp0 |
|- ( 0 e. CC -> ( 0 ^c 0 ) = 1 ) |
32 |
30 31
|
ax-mp |
|- ( 0 ^c 0 ) = 1 |
33 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
34 |
32 33
|
eqtr4i |
|- ( 0 ^c 0 ) = ( 1 x. 1 ) |
35 |
|
simplr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> A = 0 ) |
36 |
|
simpr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> B = 0 ) |
37 |
36
|
oveq1d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( B x. ( k + 1 ) ) = ( 0 x. ( k + 1 ) ) ) |
38 |
|
nn0p1nn |
|- ( k e. NN0 -> ( k + 1 ) e. NN ) |
39 |
38
|
adantl |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( k + 1 ) e. NN ) |
40 |
39
|
nncnd |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( k + 1 ) e. CC ) |
41 |
40
|
ad2antrr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( k + 1 ) e. CC ) |
42 |
41
|
mul02d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( 0 x. ( k + 1 ) ) = 0 ) |
43 |
37 42
|
eqtrd |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( B x. ( k + 1 ) ) = 0 ) |
44 |
35 43
|
oveq12d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( 0 ^c 0 ) ) |
45 |
36
|
oveq1d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( B x. k ) = ( 0 x. k ) ) |
46 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
47 |
46
|
adantl |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> k e. CC ) |
48 |
47
|
ad2antrr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> k e. CC ) |
49 |
48
|
mul02d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( 0 x. k ) = 0 ) |
50 |
45 49
|
eqtrd |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( B x. k ) = 0 ) |
51 |
35 50
|
oveq12d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c ( B x. k ) ) = ( 0 ^c 0 ) ) |
52 |
51 32
|
eqtrdi |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c ( B x. k ) ) = 1 ) |
53 |
35 36
|
oveq12d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c B ) = ( 0 ^c 0 ) ) |
54 |
53 32
|
eqtrdi |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c B ) = 1 ) |
55 |
52 54
|
oveq12d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) = ( 1 x. 1 ) ) |
56 |
34 44 55
|
3eqtr4a |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
57 |
|
simpll |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> A e. CC ) |
58 |
57
|
ad2antrr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> A e. CC ) |
59 |
|
simplr |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> B e. CC ) |
60 |
59 47
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( B x. k ) e. CC ) |
61 |
60
|
ad2antrr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( B x. k ) e. CC ) |
62 |
|
cxpcl |
|- ( ( A e. CC /\ ( B x. k ) e. CC ) -> ( A ^c ( B x. k ) ) e. CC ) |
63 |
58 61 62
|
syl2anc |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c ( B x. k ) ) e. CC ) |
64 |
63
|
mul01d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( ( A ^c ( B x. k ) ) x. 0 ) = 0 ) |
65 |
|
simplr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> A = 0 ) |
66 |
65
|
oveq1d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c B ) = ( 0 ^c B ) ) |
67 |
59
|
ad2antrr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> B e. CC ) |
68 |
|
simpr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> B =/= 0 ) |
69 |
|
0cxp |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
70 |
67 68 69
|
syl2anc |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
71 |
66 70
|
eqtrd |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c B ) = 0 ) |
72 |
71
|
oveq2d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) = ( ( A ^c ( B x. k ) ) x. 0 ) ) |
73 |
65
|
oveq1d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( 0 ^c ( B x. ( k + 1 ) ) ) ) |
74 |
40
|
ad2antrr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( k + 1 ) e. CC ) |
75 |
67 74
|
mulcld |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( B x. ( k + 1 ) ) e. CC ) |
76 |
39
|
nnne0d |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( k + 1 ) =/= 0 ) |
77 |
76
|
ad2antrr |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( k + 1 ) =/= 0 ) |
78 |
67 74 68 77
|
mulne0d |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( B x. ( k + 1 ) ) =/= 0 ) |
79 |
|
0cxp |
|- ( ( ( B x. ( k + 1 ) ) e. CC /\ ( B x. ( k + 1 ) ) =/= 0 ) -> ( 0 ^c ( B x. ( k + 1 ) ) ) = 0 ) |
80 |
75 78 79
|
syl2anc |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( 0 ^c ( B x. ( k + 1 ) ) ) = 0 ) |
81 |
73 80
|
eqtrd |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = 0 ) |
82 |
64 72 81
|
3eqtr4rd |
|- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
83 |
56 82
|
pm2.61dane |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
84 |
59
|
adantr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> B e. CC ) |
85 |
47
|
adantr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> k e. CC ) |
86 |
|
1cnd |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> 1 e. CC ) |
87 |
84 85 86
|
adddid |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( B x. ( k + 1 ) ) = ( ( B x. k ) + ( B x. 1 ) ) ) |
88 |
84
|
mulid1d |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( B x. 1 ) = B ) |
89 |
88
|
oveq2d |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( ( B x. k ) + ( B x. 1 ) ) = ( ( B x. k ) + B ) ) |
90 |
87 89
|
eqtrd |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( B x. ( k + 1 ) ) = ( ( B x. k ) + B ) ) |
91 |
90
|
oveq2d |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( A ^c ( ( B x. k ) + B ) ) ) |
92 |
57
|
adantr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> A e. CC ) |
93 |
|
simpr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> A =/= 0 ) |
94 |
60
|
adantr |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( B x. k ) e. CC ) |
95 |
|
cxpadd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B x. k ) e. CC /\ B e. CC ) -> ( A ^c ( ( B x. k ) + B ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
96 |
92 93 94 84 95
|
syl211anc |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( A ^c ( ( B x. k ) + B ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
97 |
91 96
|
eqtrd |
|- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
98 |
83 97
|
pm2.61dane |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
99 |
|
expp1 |
|- ( ( ( A ^c B ) e. CC /\ k e. NN0 ) -> ( ( A ^c B ) ^ ( k + 1 ) ) = ( ( ( A ^c B ) ^ k ) x. ( A ^c B ) ) ) |
100 |
26 99
|
sylan |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^c B ) ^ ( k + 1 ) ) = ( ( ( A ^c B ) ^ k ) x. ( A ^c B ) ) ) |
101 |
98 100
|
eqeq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) <-> ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) = ( ( ( A ^c B ) ^ k ) x. ( A ^c B ) ) ) ) |
102 |
29 101
|
syl5ibr |
|- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) |
103 |
102
|
expcom |
|- ( k e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) ) |
104 |
103
|
a2d |
|- ( k e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) ) -> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) ) |
105 |
5 10 15 20 28 104
|
nn0ind |
|- ( C e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
106 |
105
|
com12 |
|- ( ( A e. CC /\ B e. CC ) -> ( C e. NN0 -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
107 |
106
|
3impia |
|- ( ( A e. CC /\ B e. CC /\ C e. NN0 ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |