Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
cxpadd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ 1 e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. ( A ^c 1 ) ) ) |
3 |
1 2
|
mp3an3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. ( A ^c 1 ) ) ) |
4 |
3
|
3impa |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. ( A ^c 1 ) ) ) |
5 |
|
cxp1 |
|- ( A e. CC -> ( A ^c 1 ) = A ) |
6 |
5
|
3ad2ant1 |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c 1 ) = A ) |
7 |
6
|
oveq2d |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( ( A ^c B ) x. ( A ^c 1 ) ) = ( ( A ^c B ) x. A ) ) |
8 |
4 7
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. A ) ) |