| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
| 2 |
|
cxpcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
| 3 |
1 2
|
sylan |
|- ( ( A e. RR+ /\ B e. CC ) -> ( A ^c B ) e. CC ) |
| 4 |
|
rpreccl |
|- ( A e. RR+ -> ( 1 / A ) e. RR+ ) |
| 5 |
4
|
rpcnd |
|- ( A e. RR+ -> ( 1 / A ) e. CC ) |
| 6 |
|
cxpcl |
|- ( ( ( 1 / A ) e. CC /\ B e. CC ) -> ( ( 1 / A ) ^c B ) e. CC ) |
| 7 |
5 6
|
sylan |
|- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) ^c B ) e. CC ) |
| 8 |
1
|
adantr |
|- ( ( A e. RR+ /\ B e. CC ) -> A e. CC ) |
| 9 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
| 10 |
9
|
adantr |
|- ( ( A e. RR+ /\ B e. CC ) -> A =/= 0 ) |
| 11 |
|
simpr |
|- ( ( A e. RR+ /\ B e. CC ) -> B e. CC ) |
| 12 |
|
cxpne0 |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
| 13 |
8 10 11 12
|
syl3anc |
|- ( ( A e. RR+ /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
| 14 |
8 10
|
recidd |
|- ( ( A e. RR+ /\ B e. CC ) -> ( A x. ( 1 / A ) ) = 1 ) |
| 15 |
14
|
oveq1d |
|- ( ( A e. RR+ /\ B e. CC ) -> ( ( A x. ( 1 / A ) ) ^c B ) = ( 1 ^c B ) ) |
| 16 |
|
rprege0 |
|- ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) |
| 17 |
16
|
adantr |
|- ( ( A e. RR+ /\ B e. CC ) -> ( A e. RR /\ 0 <_ A ) ) |
| 18 |
4
|
rprege0d |
|- ( A e. RR+ -> ( ( 1 / A ) e. RR /\ 0 <_ ( 1 / A ) ) ) |
| 19 |
18
|
adantr |
|- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) e. RR /\ 0 <_ ( 1 / A ) ) ) |
| 20 |
|
mulcxp |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( ( 1 / A ) e. RR /\ 0 <_ ( 1 / A ) ) /\ B e. CC ) -> ( ( A x. ( 1 / A ) ) ^c B ) = ( ( A ^c B ) x. ( ( 1 / A ) ^c B ) ) ) |
| 21 |
17 19 11 20
|
syl3anc |
|- ( ( A e. RR+ /\ B e. CC ) -> ( ( A x. ( 1 / A ) ) ^c B ) = ( ( A ^c B ) x. ( ( 1 / A ) ^c B ) ) ) |
| 22 |
|
1cxp |
|- ( B e. CC -> ( 1 ^c B ) = 1 ) |
| 23 |
11 22
|
syl |
|- ( ( A e. RR+ /\ B e. CC ) -> ( 1 ^c B ) = 1 ) |
| 24 |
15 21 23
|
3eqtr3d |
|- ( ( A e. RR+ /\ B e. CC ) -> ( ( A ^c B ) x. ( ( 1 / A ) ^c B ) ) = 1 ) |
| 25 |
3 7 13 24
|
mvllmuld |
|- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |