Description: Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpcxpcld.1 | |- ( ph -> A e. RR+ ) |
|
cxprecd.2 | |- ( ph -> B e. CC ) |
||
Assertion | cxprecd | |- ( ph -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcxpcld.1 | |- ( ph -> A e. RR+ ) |
|
2 | cxprecd.2 | |- ( ph -> B e. CC ) |
|
3 | cxprec | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |