| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. CC /\ N e. NN ) -> N e. CC ) | 
						
							| 3 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. CC /\ N e. NN ) -> N =/= 0 ) | 
						
							| 5 | 2 4 | recid2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( 1 / N ) x. N ) = 1 ) | 
						
							| 6 | 5 | oveq2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( A ^c ( ( 1 / N ) x. N ) ) = ( A ^c 1 ) ) | 
						
							| 7 |  | simpl |  |-  ( ( A e. CC /\ N e. NN ) -> A e. CC ) | 
						
							| 8 |  | nnrecre |  |-  ( N e. NN -> ( 1 / N ) e. RR ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. CC /\ N e. NN ) -> ( 1 / N ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( A e. CC /\ N e. NN ) -> ( 1 / N ) e. CC ) | 
						
							| 11 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 12 | 11 | adantl |  |-  ( ( A e. CC /\ N e. NN ) -> N e. NN0 ) | 
						
							| 13 |  | cxpmul2 |  |-  ( ( A e. CC /\ ( 1 / N ) e. CC /\ N e. NN0 ) -> ( A ^c ( ( 1 / N ) x. N ) ) = ( ( A ^c ( 1 / N ) ) ^ N ) ) | 
						
							| 14 | 7 10 12 13 | syl3anc |  |-  ( ( A e. CC /\ N e. NN ) -> ( A ^c ( ( 1 / N ) x. N ) ) = ( ( A ^c ( 1 / N ) ) ^ N ) ) | 
						
							| 15 |  | cxp1 |  |-  ( A e. CC -> ( A ^c 1 ) = A ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. CC /\ N e. NN ) -> ( A ^c 1 ) = A ) | 
						
							| 17 | 6 14 16 | 3eqtr3d |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A ) |