Step |
Hyp |
Ref |
Expression |
1 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
3 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
4 |
2 3
|
gt0ne0ii |
|- ( 1 / 2 ) =/= 0 |
5 |
|
0cxp |
|- ( ( ( 1 / 2 ) e. CC /\ ( 1 / 2 ) =/= 0 ) -> ( 0 ^c ( 1 / 2 ) ) = 0 ) |
6 |
1 4 5
|
mp2an |
|- ( 0 ^c ( 1 / 2 ) ) = 0 |
7 |
|
sqrt0 |
|- ( sqrt ` 0 ) = 0 |
8 |
6 7
|
eqtr4i |
|- ( 0 ^c ( 1 / 2 ) ) = ( sqrt ` 0 ) |
9 |
|
oveq1 |
|- ( A = 0 -> ( A ^c ( 1 / 2 ) ) = ( 0 ^c ( 1 / 2 ) ) ) |
10 |
|
fveq2 |
|- ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) |
11 |
8 9 10
|
3eqtr4a |
|- ( A = 0 -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
12 |
11
|
a1i |
|- ( A e. CC -> ( A = 0 -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) ) |
13 |
|
ax-icn |
|- _i e. CC |
14 |
|
sqrtcl |
|- ( A e. CC -> ( sqrt ` A ) e. CC ) |
15 |
14
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` A ) e. CC ) |
16 |
|
sqmul |
|- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) ) |
17 |
13 15 16
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) ) |
18 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
19 |
18
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i ^ 2 ) = -u 1 ) |
20 |
|
sqrtth |
|- ( A e. CC -> ( ( sqrt ` A ) ^ 2 ) = A ) |
21 |
20
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
22 |
19 21
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) = ( -u 1 x. A ) ) |
23 |
|
mulm1 |
|- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
24 |
23
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u 1 x. A ) = -u A ) |
25 |
17 22 24
|
3eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A ) |
26 |
|
cxpsqrtlem |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. RR ) |
27 |
26
|
resqcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) e. RR ) |
28 |
25 27
|
eqeltrrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u A e. RR ) |
29 |
|
negeq0 |
|- ( A e. CC -> ( A = 0 <-> -u A = 0 ) ) |
30 |
29
|
necon3bid |
|- ( A e. CC -> ( A =/= 0 <-> -u A =/= 0 ) ) |
31 |
30
|
biimpa |
|- ( ( A e. CC /\ A =/= 0 ) -> -u A =/= 0 ) |
32 |
31
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u A =/= 0 ) |
33 |
25 32
|
eqnetrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) =/= 0 ) |
34 |
|
sq0i |
|- ( ( _i x. ( sqrt ` A ) ) = 0 -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = 0 ) |
35 |
34
|
necon3i |
|- ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) =/= 0 -> ( _i x. ( sqrt ` A ) ) =/= 0 ) |
36 |
33 35
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) =/= 0 ) |
37 |
26 36
|
sqgt0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 < ( ( _i x. ( sqrt ` A ) ) ^ 2 ) ) |
38 |
37 25
|
breqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 < -u A ) |
39 |
28 38
|
elrpd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u A e. RR+ ) |
40 |
|
logneg |
|- ( -u A e. RR+ -> ( log ` -u -u A ) = ( ( log ` -u A ) + ( _i x. _pi ) ) ) |
41 |
39 40
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` -u -u A ) = ( ( log ` -u A ) + ( _i x. _pi ) ) ) |
42 |
|
negneg |
|- ( A e. CC -> -u -u A = A ) |
43 |
42
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u -u A = A ) |
44 |
43
|
fveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` -u -u A ) = ( log ` A ) ) |
45 |
39
|
relogcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` -u A ) e. RR ) |
46 |
45
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` -u A ) e. CC ) |
47 |
|
picn |
|- _pi e. CC |
48 |
13 47
|
mulcli |
|- ( _i x. _pi ) e. CC |
49 |
|
addcom |
|- ( ( ( log ` -u A ) e. CC /\ ( _i x. _pi ) e. CC ) -> ( ( log ` -u A ) + ( _i x. _pi ) ) = ( ( _i x. _pi ) + ( log ` -u A ) ) ) |
50 |
46 48 49
|
sylancl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( log ` -u A ) + ( _i x. _pi ) ) = ( ( _i x. _pi ) + ( log ` -u A ) ) ) |
51 |
41 44 50
|
3eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( log ` A ) = ( ( _i x. _pi ) + ( log ` -u A ) ) ) |
52 |
51
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( log ` A ) ) = ( ( 1 / 2 ) x. ( ( _i x. _pi ) + ( log ` -u A ) ) ) ) |
53 |
|
adddi |
|- ( ( ( 1 / 2 ) e. CC /\ ( _i x. _pi ) e. CC /\ ( log ` -u A ) e. CC ) -> ( ( 1 / 2 ) x. ( ( _i x. _pi ) + ( log ` -u A ) ) ) = ( ( ( 1 / 2 ) x. ( _i x. _pi ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
54 |
1 48 46 53
|
mp3an12i |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( ( _i x. _pi ) + ( log ` -u A ) ) ) = ( ( ( 1 / 2 ) x. ( _i x. _pi ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
55 |
52 54
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( log ` A ) ) = ( ( ( 1 / 2 ) x. ( _i x. _pi ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
56 |
|
2cn |
|- 2 e. CC |
57 |
|
2ne0 |
|- 2 =/= 0 |
58 |
|
divrec2 |
|- ( ( ( _i x. _pi ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( _i x. _pi ) / 2 ) = ( ( 1 / 2 ) x. ( _i x. _pi ) ) ) |
59 |
48 56 57 58
|
mp3an |
|- ( ( _i x. _pi ) / 2 ) = ( ( 1 / 2 ) x. ( _i x. _pi ) ) |
60 |
13 47 56 57
|
divassi |
|- ( ( _i x. _pi ) / 2 ) = ( _i x. ( _pi / 2 ) ) |
61 |
59 60
|
eqtr3i |
|- ( ( 1 / 2 ) x. ( _i x. _pi ) ) = ( _i x. ( _pi / 2 ) ) |
62 |
61
|
oveq1i |
|- ( ( ( 1 / 2 ) x. ( _i x. _pi ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) = ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) |
63 |
55 62
|
eqtrdi |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( log ` A ) ) = ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
64 |
63
|
fveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( exp ` ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) ) |
65 |
47 56 57
|
divcli |
|- ( _pi / 2 ) e. CC |
66 |
13 65
|
mulcli |
|- ( _i x. ( _pi / 2 ) ) e. CC |
67 |
|
mulcl |
|- ( ( ( 1 / 2 ) e. CC /\ ( log ` -u A ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` -u A ) ) e. CC ) |
68 |
1 46 67
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( 1 / 2 ) x. ( log ` -u A ) ) e. CC ) |
69 |
|
efadd |
|- ( ( ( _i x. ( _pi / 2 ) ) e. CC /\ ( ( 1 / 2 ) x. ( log ` -u A ) ) e. CC ) -> ( exp ` ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) = ( ( exp ` ( _i x. ( _pi / 2 ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) ) |
70 |
66 68 69
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( ( _i x. ( _pi / 2 ) ) + ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) = ( ( exp ` ( _i x. ( _pi / 2 ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) ) |
71 |
|
efhalfpi |
|- ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i |
72 |
71
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i ) |
73 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
74 |
73
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> -u A e. CC ) |
75 |
1
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( 1 / 2 ) e. CC ) |
76 |
|
cxpef |
|- ( ( -u A e. CC /\ -u A =/= 0 /\ ( 1 / 2 ) e. CC ) -> ( -u A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
77 |
74 32 75 76
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) |
78 |
|
ax-1cn |
|- 1 e. CC |
79 |
|
2halves |
|- ( 1 e. CC -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
80 |
78 79
|
ax-mp |
|- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
81 |
80
|
oveq2i |
|- ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( -u A ^c 1 ) |
82 |
|
cxp1 |
|- ( -u A e. CC -> ( -u A ^c 1 ) = -u A ) |
83 |
74 82
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c 1 ) = -u A ) |
84 |
81 83
|
syl5eq |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = -u A ) |
85 |
|
rpcxpcl |
|- ( ( -u A e. RR+ /\ ( 1 / 2 ) e. RR ) -> ( -u A ^c ( 1 / 2 ) ) e. RR+ ) |
86 |
39 2 85
|
sylancl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( 1 / 2 ) ) e. RR+ ) |
87 |
86
|
rpcnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( 1 / 2 ) ) e. CC ) |
88 |
87
|
sqvald |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( -u A ^c ( 1 / 2 ) ) x. ( -u A ^c ( 1 / 2 ) ) ) ) |
89 |
|
cxpadd |
|- ( ( ( -u A e. CC /\ -u A =/= 0 ) /\ ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( -u A ^c ( 1 / 2 ) ) x. ( -u A ^c ( 1 / 2 ) ) ) ) |
90 |
74 32 75 75 89
|
syl211anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( -u A ^c ( 1 / 2 ) ) x. ( -u A ^c ( 1 / 2 ) ) ) ) |
91 |
88 90
|
eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( -u A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
92 |
74
|
sqsqrtd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( sqrt ` -u A ) ^ 2 ) = -u A ) |
93 |
84 91 92
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` -u A ) ^ 2 ) ) |
94 |
86
|
rprege0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( -u A ^c ( 1 / 2 ) ) e. RR /\ 0 <_ ( -u A ^c ( 1 / 2 ) ) ) ) |
95 |
39
|
rpsqrtcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` -u A ) e. RR+ ) |
96 |
95
|
rprege0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( sqrt ` -u A ) e. RR /\ 0 <_ ( sqrt ` -u A ) ) ) |
97 |
|
sq11 |
|- ( ( ( ( -u A ^c ( 1 / 2 ) ) e. RR /\ 0 <_ ( -u A ^c ( 1 / 2 ) ) ) /\ ( ( sqrt ` -u A ) e. RR /\ 0 <_ ( sqrt ` -u A ) ) ) -> ( ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` -u A ) ^ 2 ) <-> ( -u A ^c ( 1 / 2 ) ) = ( sqrt ` -u A ) ) ) |
98 |
94 96 97
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( ( -u A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` -u A ) ^ 2 ) <-> ( -u A ^c ( 1 / 2 ) ) = ( sqrt ` -u A ) ) ) |
99 |
93 98
|
mpbid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( -u A ^c ( 1 / 2 ) ) = ( sqrt ` -u A ) ) |
100 |
77 99
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) = ( sqrt ` -u A ) ) |
101 |
72 100
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( exp ` ( _i x. ( _pi / 2 ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` -u A ) ) ) ) = ( _i x. ( sqrt ` -u A ) ) ) |
102 |
64 70 101
|
3eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( _i x. ( sqrt ` -u A ) ) ) |
103 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
104 |
1 103
|
mp3an3 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
105 |
104
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
106 |
43
|
fveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` -u -u A ) = ( sqrt ` A ) ) |
107 |
39
|
rpge0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ -u A ) |
108 |
28 107
|
sqrtnegd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` -u -u A ) = ( _i x. ( sqrt ` -u A ) ) ) |
109 |
106 108
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` A ) = ( _i x. ( sqrt ` -u A ) ) ) |
110 |
102 105 109
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
111 |
110
|
ex |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) ) |
112 |
80
|
oveq2i |
|- ( A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( A ^c 1 ) |
113 |
|
cxpadd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) ) |
114 |
1 1 113
|
mp3an23 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) ) |
115 |
|
cxp1 |
|- ( A e. CC -> ( A ^c 1 ) = A ) |
116 |
115
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c 1 ) = A ) |
117 |
112 114 116
|
3eqtr3a |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) = A ) |
118 |
|
cxpcl |
|- ( ( A e. CC /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( 1 / 2 ) ) e. CC ) |
119 |
1 118
|
mpan2 |
|- ( A e. CC -> ( A ^c ( 1 / 2 ) ) e. CC ) |
120 |
119
|
sqvald |
|- ( A e. CC -> ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) ) |
121 |
120
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( A ^c ( 1 / 2 ) ) x. ( A ^c ( 1 / 2 ) ) ) ) |
122 |
20
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
123 |
117 121 122
|
3eqtr4d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) ) |
124 |
|
sqeqor |
|- ( ( ( A ^c ( 1 / 2 ) ) e. CC /\ ( sqrt ` A ) e. CC ) -> ( ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) <-> ( ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) \/ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) ) |
125 |
119 14 124
|
syl2anc |
|- ( A e. CC -> ( ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) <-> ( ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) \/ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) ) |
126 |
125
|
biimpa |
|- ( ( A e. CC /\ ( ( A ^c ( 1 / 2 ) ) ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) ) -> ( ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) \/ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) |
127 |
123 126
|
syldan |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) \/ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) |
128 |
127
|
ord |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) -> ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) ) |
129 |
128
|
con1d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) ) |
130 |
111 129
|
pm2.61d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
131 |
130
|
ex |
|- ( A e. CC -> ( A =/= 0 -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) ) |
132 |
12 131
|
pm2.61dne |
|- ( A e. CC -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |