| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | sqrtcl |  |-  ( A e. CC -> ( sqrt ` A ) e. CC ) | 
						
							| 3 | 2 | ad2antrr |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` A ) e. CC ) | 
						
							| 4 |  | mulcl |  |-  ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( _i x. ( sqrt ` A ) ) e. CC ) | 
						
							| 5 | 1 3 4 | sylancr |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. CC ) | 
						
							| 6 |  | imval |  |-  ( ( _i x. ( sqrt ` A ) ) e. CC -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) ) | 
						
							| 8 |  | ine0 |  |-  _i =/= 0 | 
						
							| 9 |  | divcan3 |  |-  ( ( ( sqrt ` A ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) | 
						
							| 10 | 1 8 9 | mp3an23 |  |-  ( ( sqrt ` A ) e. CC -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) = ( Re ` ( sqrt ` A ) ) ) | 
						
							| 13 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 14 | 13 | recni |  |-  ( 1 / 2 ) e. CC | 
						
							| 15 |  | logcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) | 
						
							| 16 |  | mulcl |  |-  ( ( ( 1 / 2 ) e. CC /\ ( log ` A ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` A ) ) e. CC ) | 
						
							| 17 | 14 15 16 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / 2 ) x. ( log ` A ) ) e. CC ) | 
						
							| 18 | 17 | recld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. RR ) | 
						
							| 19 | 18 | reefcld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) | 
						
							| 20 | 17 | imcld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. RR ) | 
						
							| 21 | 20 | recoscld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) | 
						
							| 22 | 18 | rpefcld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR+ ) | 
						
							| 23 | 22 | rpge0d |  |-  ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) | 
						
							| 24 |  | immul2 |  |-  ( ( ( 1 / 2 ) e. RR /\ ( log ` A ) e. CC ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) ) | 
						
							| 25 | 13 15 24 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) ) | 
						
							| 26 | 15 | imcld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) | 
						
							| 27 | 26 | recnd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) | 
						
							| 28 |  | mulcom |  |-  ( ( ( 1 / 2 ) e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) | 
						
							| 29 | 14 27 28 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) | 
						
							| 30 | 25 29 | eqtrd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) | 
						
							| 31 |  | logimcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) | 
						
							| 32 | 31 | simpld |  |-  ( ( A e. CC /\ A =/= 0 ) -> -u _pi < ( Im ` ( log ` A ) ) ) | 
						
							| 33 |  | pire |  |-  _pi e. RR | 
						
							| 34 | 33 | renegcli |  |-  -u _pi e. RR | 
						
							| 35 |  | ltle |  |-  ( ( -u _pi e. RR /\ ( Im ` ( log ` A ) ) e. RR ) -> ( -u _pi < ( Im ` ( log ` A ) ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) ) | 
						
							| 36 | 34 26 35 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) ) | 
						
							| 37 | 32 36 | mpd |  |-  ( ( A e. CC /\ A =/= 0 ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) | 
						
							| 38 | 31 | simprd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) <_ _pi ) | 
						
							| 39 | 34 33 | elicc2i |  |-  ( ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) <-> ( ( Im ` ( log ` A ) ) e. RR /\ -u _pi <_ ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) | 
						
							| 40 | 26 37 38 39 | syl3anbrc |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) ) | 
						
							| 41 |  | halfgt0 |  |-  0 < ( 1 / 2 ) | 
						
							| 42 | 13 41 | elrpii |  |-  ( 1 / 2 ) e. RR+ | 
						
							| 43 | 33 | recni |  |-  _pi e. CC | 
						
							| 44 |  | 2cn |  |-  2 e. CC | 
						
							| 45 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 46 |  | divneg |  |-  ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) | 
						
							| 47 | 43 44 45 46 | mp3an |  |-  -u ( _pi / 2 ) = ( -u _pi / 2 ) | 
						
							| 48 | 34 | recni |  |-  -u _pi e. CC | 
						
							| 49 | 48 44 45 | divreci |  |-  ( -u _pi / 2 ) = ( -u _pi x. ( 1 / 2 ) ) | 
						
							| 50 | 47 49 | eqtr2i |  |-  ( -u _pi x. ( 1 / 2 ) ) = -u ( _pi / 2 ) | 
						
							| 51 | 43 44 45 | divreci |  |-  ( _pi / 2 ) = ( _pi x. ( 1 / 2 ) ) | 
						
							| 52 | 51 | eqcomi |  |-  ( _pi x. ( 1 / 2 ) ) = ( _pi / 2 ) | 
						
							| 53 | 34 33 42 50 52 | iccdili |  |-  ( ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) -> ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) | 
						
							| 54 | 40 53 | syl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) | 
						
							| 55 | 30 54 | eqeltrd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) | 
						
							| 56 |  | cosq14ge0 |  |-  ( ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) | 
						
							| 58 | 19 21 23 57 | mulge0d |  |-  ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) | 
						
							| 59 |  | cxpef |  |-  ( ( A e. CC /\ A =/= 0 /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) | 
						
							| 60 | 14 59 | mp3an3 |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) | 
						
							| 61 |  | efeul |  |-  ( ( ( 1 / 2 ) x. ( log ` A ) ) e. CC -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) | 
						
							| 62 | 17 61 | syl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) | 
						
							| 63 | 60 62 | eqtrd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( Re ` ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) ) | 
						
							| 65 | 21 | recnd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) | 
						
							| 66 | 20 | resincld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) | 
						
							| 67 | 66 | recnd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) | 
						
							| 68 |  | mulcl |  |-  ( ( _i e. CC /\ ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) -> ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) e. CC ) | 
						
							| 69 | 1 67 68 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) e. CC ) | 
						
							| 70 | 65 69 | addcld |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) e. CC ) | 
						
							| 71 | 19 70 | remul2d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) ) | 
						
							| 72 | 21 66 | crred |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) = ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) | 
						
							| 73 | 72 | oveq2d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) | 
						
							| 74 | 64 71 73 | 3eqtrd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) | 
						
							| 75 | 58 74 | breqtrrd |  |-  ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( Re ` ( A ^c ( 1 / 2 ) ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ ( Re ` ( A ^c ( 1 / 2 ) ) ) ) | 
						
							| 77 |  | simpr |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) | 
						
							| 78 | 77 | fveq2d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( Re ` -u ( sqrt ` A ) ) ) | 
						
							| 79 | 3 | renegd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` -u ( sqrt ` A ) ) = -u ( Re ` ( sqrt ` A ) ) ) | 
						
							| 80 | 78 79 | eqtrd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = -u ( Re ` ( sqrt ` A ) ) ) | 
						
							| 81 | 76 80 | breqtrd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ -u ( Re ` ( sqrt ` A ) ) ) | 
						
							| 82 | 3 | recld |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) e. RR ) | 
						
							| 83 | 82 | le0neg1d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( Re ` ( sqrt ` A ) ) <_ 0 <-> 0 <_ -u ( Re ` ( sqrt ` A ) ) ) ) | 
						
							| 84 | 81 83 | mpbird |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) <_ 0 ) | 
						
							| 85 |  | sqrtrege0 |  |-  ( A e. CC -> 0 <_ ( Re ` ( sqrt ` A ) ) ) | 
						
							| 86 | 85 | ad2antrr |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ ( Re ` ( sqrt ` A ) ) ) | 
						
							| 87 |  | 0re |  |-  0 e. RR | 
						
							| 88 |  | letri3 |  |-  ( ( ( Re ` ( sqrt ` A ) ) e. RR /\ 0 e. RR ) -> ( ( Re ` ( sqrt ` A ) ) = 0 <-> ( ( Re ` ( sqrt ` A ) ) <_ 0 /\ 0 <_ ( Re ` ( sqrt ` A ) ) ) ) ) | 
						
							| 89 | 82 87 88 | sylancl |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( Re ` ( sqrt ` A ) ) = 0 <-> ( ( Re ` ( sqrt ` A ) ) <_ 0 /\ 0 <_ ( Re ` ( sqrt ` A ) ) ) ) ) | 
						
							| 90 | 84 86 89 | mpbir2and |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) = 0 ) | 
						
							| 91 | 7 12 90 | 3eqtrd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = 0 ) | 
						
							| 92 | 5 91 | reim0bd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. RR ) |