Step |
Hyp |
Ref |
Expression |
1 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
2 |
|
0cxp |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( 0 ^c 2 ) = 0 ) |
3 |
1 2
|
ax-mp |
|- ( 0 ^c 2 ) = 0 |
4 |
|
fveq2 |
|- ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) |
5 |
|
sqrt0 |
|- ( sqrt ` 0 ) = 0 |
6 |
4 5
|
eqtrdi |
|- ( A = 0 -> ( sqrt ` A ) = 0 ) |
7 |
6
|
oveq1d |
|- ( A = 0 -> ( ( sqrt ` A ) ^c 2 ) = ( 0 ^c 2 ) ) |
8 |
|
id |
|- ( A = 0 -> A = 0 ) |
9 |
3 7 8
|
3eqtr4a |
|- ( A = 0 -> ( ( sqrt ` A ) ^c 2 ) = A ) |
10 |
9
|
a1d |
|- ( A = 0 -> ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) ) |
11 |
|
sqrtcl |
|- ( A e. CC -> ( sqrt ` A ) e. CC ) |
12 |
11
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( sqrt ` A ) e. CC ) |
13 |
|
simpl |
|- ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> A e. CC ) |
14 |
|
simpr |
|- ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> ( sqrt ` A ) = 0 ) |
15 |
13 14
|
sqr00d |
|- ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> A = 0 ) |
16 |
15
|
ex |
|- ( A e. CC -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) |
17 |
16
|
necon3d |
|- ( A e. CC -> ( A =/= 0 -> ( sqrt ` A ) =/= 0 ) ) |
18 |
17
|
imp |
|- ( ( A e. CC /\ A =/= 0 ) -> ( sqrt ` A ) =/= 0 ) |
19 |
|
2z |
|- 2 e. ZZ |
20 |
19
|
a1i |
|- ( ( A e. CC /\ A =/= 0 ) -> 2 e. ZZ ) |
21 |
12 18 20
|
cxpexpzd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^c 2 ) = ( ( sqrt ` A ) ^ 2 ) ) |
22 |
|
sqrtth |
|- ( A e. CC -> ( ( sqrt ` A ) ^ 2 ) = A ) |
23 |
22
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
24 |
21 23
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^c 2 ) = A ) |
25 |
24
|
expcom |
|- ( A =/= 0 -> ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) ) |
26 |
10 25
|
pm2.61ine |
|- ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) |