| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 2 |  | 0cxp |  |-  ( ( 2 e. CC /\ 2 =/= 0 ) -> ( 0 ^c 2 ) = 0 ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( 0 ^c 2 ) = 0 | 
						
							| 4 |  | fveq2 |  |-  ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) | 
						
							| 5 |  | sqrt0 |  |-  ( sqrt ` 0 ) = 0 | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( A = 0 -> ( sqrt ` A ) = 0 ) | 
						
							| 7 | 6 | oveq1d |  |-  ( A = 0 -> ( ( sqrt ` A ) ^c 2 ) = ( 0 ^c 2 ) ) | 
						
							| 8 |  | id |  |-  ( A = 0 -> A = 0 ) | 
						
							| 9 | 3 7 8 | 3eqtr4a |  |-  ( A = 0 -> ( ( sqrt ` A ) ^c 2 ) = A ) | 
						
							| 10 | 9 | a1d |  |-  ( A = 0 -> ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) ) | 
						
							| 11 |  | sqrtcl |  |-  ( A e. CC -> ( sqrt ` A ) e. CC ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( sqrt ` A ) e. CC ) | 
						
							| 13 |  | simpl |  |-  ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> A e. CC ) | 
						
							| 14 |  | simpr |  |-  ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> ( sqrt ` A ) = 0 ) | 
						
							| 15 | 13 14 | sqr00d |  |-  ( ( A e. CC /\ ( sqrt ` A ) = 0 ) -> A = 0 ) | 
						
							| 16 | 15 | ex |  |-  ( A e. CC -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) | 
						
							| 17 | 16 | necon3d |  |-  ( A e. CC -> ( A =/= 0 -> ( sqrt ` A ) =/= 0 ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( sqrt ` A ) =/= 0 ) | 
						
							| 19 |  | 2z |  |-  2 e. ZZ | 
						
							| 20 | 19 | a1i |  |-  ( ( A e. CC /\ A =/= 0 ) -> 2 e. ZZ ) | 
						
							| 21 | 12 18 20 | cxpexpzd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^c 2 ) = ( ( sqrt ` A ) ^ 2 ) ) | 
						
							| 22 |  | sqrtth |  |-  ( A e. CC -> ( ( sqrt ` A ) ^ 2 ) = A ) | 
						
							| 23 | 22 | adantr |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^ 2 ) = A ) | 
						
							| 24 | 21 23 | eqtrd |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( sqrt ` A ) ^c 2 ) = A ) | 
						
							| 25 | 24 | expcom |  |-  ( A =/= 0 -> ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) ) | 
						
							| 26 | 10 25 | pm2.61ine |  |-  ( A e. CC -> ( ( sqrt ` A ) ^c 2 ) = A ) |