Description: Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cxp0d.1 | |- ( ph -> A e. CC ) |
|
cxpefd.2 | |- ( ph -> A =/= 0 ) |
||
cxpefd.3 | |- ( ph -> B e. CC ) |
||
cxpaddd.4 | |- ( ph -> C e. CC ) |
||
Assertion | cxpsubd | |- ( ph -> ( A ^c ( B - C ) ) = ( ( A ^c B ) / ( A ^c C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxp0d.1 | |- ( ph -> A e. CC ) |
|
2 | cxpefd.2 | |- ( ph -> A =/= 0 ) |
|
3 | cxpefd.3 | |- ( ph -> B e. CC ) |
|
4 | cxpaddd.4 | |- ( ph -> C e. CC ) |
|
5 | cxpsub | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B - C ) ) = ( ( A ^c B ) / ( A ^c C ) ) ) |
|
6 | 1 2 3 4 5 | syl211anc | |- ( ph -> ( A ^c ( B - C ) ) = ( ( A ^c B ) / ( A ^c C ) ) ) |