Step |
Hyp |
Ref |
Expression |
1 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
2 |
|
relpths |
|- Rel ( Paths ` G ) |
3 |
2
|
brrelex1i |
|- ( F ( Paths ` G ) P -> F e. _V ) |
4 |
|
hasheq0 |
|- ( F e. _V -> ( ( # ` F ) = 0 <-> F = (/) ) ) |
5 |
4
|
necon3bid |
|- ( F e. _V -> ( ( # ` F ) =/= 0 <-> F =/= (/) ) ) |
6 |
5
|
bicomd |
|- ( F e. _V -> ( F =/= (/) <-> ( # ` F ) =/= 0 ) ) |
7 |
3 6
|
syl |
|- ( F ( Paths ` G ) P -> ( F =/= (/) <-> ( # ` F ) =/= 0 ) ) |
8 |
7
|
biimpa |
|- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( # ` F ) =/= 0 ) |
9 |
|
spthdep |
|- ( ( F ( SPaths ` G ) P /\ ( # ` F ) =/= 0 ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |
10 |
9
|
neneqd |
|- ( ( F ( SPaths ` G ) P /\ ( # ` F ) =/= 0 ) -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
11 |
10
|
expcom |
|- ( ( # ` F ) =/= 0 -> ( F ( SPaths ` G ) P -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
12 |
8 11
|
syl |
|- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( F ( SPaths ` G ) P -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
13 |
12
|
con2d |
|- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> -. F ( SPaths ` G ) P ) ) |
14 |
13
|
impancom |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( F =/= (/) -> -. F ( SPaths ` G ) P ) ) |
15 |
1 14
|
sylbi |
|- ( F ( Cycles ` G ) P -> ( F =/= (/) -> -. F ( SPaths ` G ) P ) ) |
16 |
15
|
com12 |
|- ( F =/= (/) -> ( F ( Cycles ` G ) P -> -. F ( SPaths ` G ) P ) ) |