| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 2 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
| 3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 4 |
3
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 5 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 6 |
|
elnnnn0c |
|- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) |
| 7 |
|
frel |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Rel P ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> Rel P ) |
| 9 |
|
fz1ssfz0 |
|- ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 10 |
|
fdm |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) |
| 11 |
9 10
|
sseqtrrid |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
| 13 |
8 12
|
jca |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 14 |
10
|
3ad2ant1 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> dom P = ( 0 ... ( # ` F ) ) ) |
| 15 |
14
|
difeq1d |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( dom P \ ( 1 ... ( # ` F ) ) ) = ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) ) |
| 16 |
|
nnnn0 |
|- ( ( # ` F ) e. NN -> ( # ` F ) e. NN0 ) |
| 17 |
|
fz0sn0fz1 |
|- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) |
| 18 |
16 17
|
syl |
|- ( ( # ` F ) e. NN -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) |
| 19 |
18
|
difeq1d |
|- ( ( # ` F ) e. NN -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) ) |
| 20 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 21 |
20
|
oveq1i |
|- ( 1 ... ( # ` F ) ) = ( ( 0 + 1 ) ... ( # ` F ) ) |
| 22 |
21
|
ineq2i |
|- ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) |
| 23 |
22
|
a1i |
|- ( ( # ` F ) e. NN -> ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) ) |
| 24 |
|
elnn0uz |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
| 25 |
16 24
|
sylib |
|- ( ( # ` F ) e. NN -> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
| 26 |
|
fzpreddisj |
|- ( ( # ` F ) e. ( ZZ>= ` 0 ) -> ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) = (/) ) |
| 27 |
25 26
|
syl |
|- ( ( # ` F ) e. NN -> ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) = (/) ) |
| 28 |
23 27
|
eqtrd |
|- ( ( # ` F ) e. NN -> ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = (/) ) |
| 29 |
|
undif5 |
|- ( ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = (/) -> ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 30 |
28 29
|
syl |
|- ( ( # ` F ) e. NN -> ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 31 |
19 30
|
eqtrd |
|- ( ( # ` F ) e. NN -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 32 |
31
|
3ad2ant2 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 33 |
15 32
|
eqtrd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( dom P \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 34 |
33
|
imaeq2d |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) = ( P " { 0 } ) ) |
| 35 |
|
ffn |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P Fn ( 0 ... ( # ` F ) ) ) |
| 36 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 37 |
16 36
|
syl |
|- ( ( # ` F ) e. NN -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 38 |
35 37
|
anim12i |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
| 39 |
38
|
3adant3 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
| 40 |
|
fnsnfv |
|- ( ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) -> { ( P ` 0 ) } = ( P " { 0 } ) ) |
| 41 |
39 40
|
syl |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> { ( P ` 0 ) } = ( P " { 0 } ) ) |
| 42 |
34 41
|
eqtr4d |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) = { ( P ` 0 ) } ) |
| 43 |
|
elfz1end |
|- ( ( # ` F ) e. NN <-> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
| 44 |
43
|
biimpi |
|- ( ( # ` F ) e. NN -> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
| 45 |
44
|
3ad2ant2 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
| 46 |
45
|
fvresd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) = ( P ` ( # ` F ) ) ) |
| 47 |
|
ffun |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Fun P ) |
| 48 |
47
|
funresd |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Fun ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> Fun ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 50 |
|
ssdmres |
|- ( ( 1 ... ( # ` F ) ) C_ dom P <-> dom ( P |` ( 1 ... ( # ` F ) ) ) = ( 1 ... ( # ` F ) ) ) |
| 51 |
12 50
|
sylib |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> dom ( P |` ( 1 ... ( # ` F ) ) ) = ( 1 ... ( # ` F ) ) ) |
| 52 |
45 51
|
eleqtrrd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 53 |
49 52
|
jca |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( Fun ( P |` ( 1 ... ( # ` F ) ) ) /\ ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 54 |
|
fvelrn |
|- ( ( Fun ( P |` ( 1 ... ( # ` F ) ) ) /\ ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 55 |
53 54
|
syl |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 56 |
46 55
|
eqeltrrd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 57 |
|
eleq1 |
|- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 58 |
57
|
3ad2ant3 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 59 |
56 58
|
mpbird |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 60 |
59
|
snssd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> { ( P ` 0 ) } C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 61 |
42 60
|
eqsstrd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 62 |
13 61
|
jca |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 63 |
62
|
3exp |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) e. NN -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 64 |
63
|
com3l |
|- ( ( # ` F ) e. NN -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 65 |
6 64
|
sylbir |
|- ( ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 66 |
65
|
expcom |
|- ( 1 <_ ( # ` F ) -> ( ( # ` F ) e. NN0 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) ) |
| 67 |
66
|
com14 |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) e. NN0 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) ) |
| 68 |
4 5 67
|
sylc |
|- ( F ( Walks ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 69 |
2 68
|
syl |
|- ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 70 |
69
|
imp |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
| 71 |
1 70
|
sylbi |
|- ( F ( Cycles ` G ) P -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
| 72 |
71
|
impcom |
|- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 73 |
|
imadifssran |
|- ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) -> ( ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) -> ran P = ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 74 |
73
|
imp |
|- ( ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) -> ran P = ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 75 |
74
|
fveq2d |
|- ( ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) -> ( # ` ran P ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 76 |
72 75
|
syl |
|- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran P ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 77 |
|
cyclispth |
|- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
| 78 |
|
pthdifv |
|- ( F ( Paths ` G ) P -> ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
| 79 |
47
|
adantl |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> Fun P ) |
| 80 |
|
fzfid |
|- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) e. Fin ) |
| 81 |
|
fnfi |
|- ( ( P Fn ( 0 ... ( # ` F ) ) /\ ( 0 ... ( # ` F ) ) e. Fin ) -> P e. Fin ) |
| 82 |
35 80 81
|
syl2anr |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> P e. Fin ) |
| 83 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
| 84 |
83
|
a1i |
|- ( ( # ` F ) e. NN0 -> 1 e. ( ZZ>= ` 0 ) ) |
| 85 |
|
fzss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
| 86 |
84 85
|
syl |
|- ( ( # ` F ) e. NN0 -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
| 87 |
86
|
adantr |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
| 88 |
10
|
adantl |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> dom P = ( 0 ... ( # ` F ) ) ) |
| 89 |
87 88
|
sseqtrrd |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
| 90 |
79 82 89
|
3jca |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 91 |
90
|
ex |
|- ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) ) |
| 92 |
5 4 91
|
sylc |
|- ( F ( Walks ` G ) P -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 93 |
2 92
|
syl |
|- ( F ( Paths ` G ) P -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 94 |
93
|
adantr |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 95 |
|
hashres |
|- ( ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ( 1 ... ( # ` F ) ) ) ) |
| 96 |
94 95
|
syl |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ( 1 ... ( # ` F ) ) ) ) |
| 97 |
|
ovexd |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) e. _V ) |
| 98 |
|
hashf1rn |
|- ( ( ( 1 ... ( # ` F ) ) e. _V /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 99 |
97 98
|
sylancom |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 100 |
2 5
|
syl |
|- ( F ( Paths ` G ) P -> ( # ` F ) e. NN0 ) |
| 101 |
|
hashfz1 |
|- ( ( # ` F ) e. NN0 -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
| 102 |
100 101
|
syl |
|- ( F ( Paths ` G ) P -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
| 103 |
102
|
adantr |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
| 104 |
96 99 103
|
3eqtr3d |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
| 105 |
104
|
ex |
|- ( F ( Paths ` G ) P -> ( ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) ) |
| 106 |
78 105
|
mpd |
|- ( F ( Paths ` G ) P -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
| 107 |
77 106
|
syl |
|- ( F ( Cycles ` G ) P -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
| 108 |
107
|
adantl |
|- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
| 109 |
76 108
|
eqtrd |
|- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran P ) = ( # ` F ) ) |