Step |
Hyp |
Ref |
Expression |
1 |
|
biidd |
|- ( ( T. /\ g = G ) -> ( ( p ` 0 ) = ( p ` ( # ` f ) ) <-> ( p ` 0 ) = ( p ` ( # ` f ) ) ) ) |
2 |
|
wksv |
|- { <. f , p >. | f ( Walks ` G ) p } e. _V |
3 |
|
pthiswlk |
|- ( f ( Paths ` G ) p -> f ( Walks ` G ) p ) |
4 |
3
|
ssopab2i |
|- { <. f , p >. | f ( Paths ` G ) p } C_ { <. f , p >. | f ( Walks ` G ) p } |
5 |
2 4
|
ssexi |
|- { <. f , p >. | f ( Paths ` G ) p } e. _V |
6 |
5
|
a1i |
|- ( T. -> { <. f , p >. | f ( Paths ` G ) p } e. _V ) |
7 |
|
df-cycls |
|- Cycles = ( g e. _V |-> { <. f , p >. | ( f ( Paths ` g ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } ) |
8 |
1 6 7
|
fvmptopab |
|- ( T. -> ( Cycles ` G ) = { <. f , p >. | ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } ) |
9 |
8
|
mptru |
|- ( Cycles ` G ) = { <. f , p >. | ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } |